矩阵对角化,SVD分解

矩阵对角化

矩阵的相似

A \boldsymbol{A} A B \boldsymbol{B} B 为两个 n n n阶矩阵,若存在可逆矩阵 P \boldsymbol{P} P,使得
P − 1 A P = B \boldsymbol{P}^{^{-1}}\boldsymbol{A}\boldsymbol{P}=\boldsymbol{B} P1AP=B
则称 A \boldsymbol{A} A B \boldsymbol{B} B 相似。特别的,如果 B \boldsymbol{B} B 为对角形矩阵,则称 A \boldsymbol{A} A 可(相似)对角化

n n n阶矩阵 A A A可对角化的充要条件: A \boldsymbol{A} A n n n个线性无关的特征向量 X 1 , X 2 , . . . X n \boldsymbol{X_{1}},\boldsymbol{X_{2}},...\boldsymbol{X_{n}} X1,X2,...Xn。具体的证明我们不在此展开,只做几点说明:

  1. n n n 阶矩阵 A \boldsymbol{A} A m m m 个不同特征值(方程 ∣ λ E − A ∣ = 0 \left | \lambda \boldsymbol{E} -\boldsymbol{A}\right |=0 λEA=0 m m m 个不同实根),则不同特征值对应的特征向量线性无关
  2. 存在 A \boldsymbol{A} A 属于某个特征值的线性无关特征向量
  3. P − 1 A P = d i a g ( λ 1 , λ 2 , . . . λ n ) \boldsymbol{P}^{^{-1}}\boldsymbol{A}\boldsymbol{P}=diag(\lambda _{1},\lambda _{2},...\lambda _{n}) P1AP=diag(λ1λ2...λn) 时, d i a g ( λ 1 , λ 2 , . . . λ n ) diag(\lambda _{1},\lambda _{2},...\lambda _{n}) diag(λ1λ2...λn) n n n个主对角元是 A \boldsymbol{A} A n n n个特征值(含重根); A \boldsymbol{A} A 分别属于 λ 1 , λ 2 , . . . λ n \lambda _{1},\lambda _{2},...\lambda _{n} λ1λ2...λn 的线性无关特征向量 X 1 , X 2 , . . . X n \boldsymbol{X_{1}},\boldsymbol{X_{2}},...\boldsymbol{X_{n}} X1,X2,...Xn 构成了可逆矩阵 P \boldsymbol{P} P 的列向量

实对称矩阵的对角化

考虑实对称矩阵的对角化,有如下结论:

  1. n n n阶实对称矩阵 A \boldsymbol{A} A 的特征值都是实数(证明思路:对表达式 A X = λ X \mathbf{AX=\lambda X} AX=λX 左乘复特征向量的共轭转置 X ˉ T \mathbf{\bar{X}^{T}} XˉT,推出 λ \lambda λ 为实数)
  2. 实对称矩阵 A \boldsymbol{A} A 不同特征值对应的特征向量正交(证明思路:列出 A \boldsymbol{A} A 两组不同的特征方程,分别左乘另一个复特征向量的共轭转置,两端取转置后方程相减)
  3. 属于 A \boldsymbol{A} A 的同一个特征值的一组线性无关特征向量不一定正交,但可用施密特正交方法将其正交化
  4. 一定存在正交矩阵 Q \mathbf{Q} Q (满足 Q − 1 = Q T \mathbf{Q}^{-1}=\mathbf{Q}^{T} Q1=QT),使得 Q − 1 A Q \boldsymbol{Q}^{^{-1}}\boldsymbol{A}\boldsymbol{Q} Q1AQ 为对角形矩阵
  5. n n n阶实对称矩阵 A \boldsymbol{A} A 存在 n n n个正交的单位特征向量

SVD分解

特征值分解只能用于可逆方阵,奇异值分解(SVD)适用于任意 m × n \mathit{m}\times\mathit{n} m×n 矩阵,定义如下:

A \boldsymbol{A} A 是一个 m × n \mathit{m}\times\mathit{n} m×n 矩阵,则存在一个分解,使得
A = U Σ V ∗ \boldsymbol{A}=\boldsymbol{U}\Sigma\boldsymbol{V}^{*} A=UΣV
其中 U \boldsymbol{U} U m × m m\times m m×m 酉矩阵(满足 U − 1 = U ∗ \boldsymbol{U^{-1}}=\boldsymbol{U}^{*} U1=U), Σ \Sigma Σ m × n m\times n m×n 非负实对称矩阵, V ∗ \boldsymbol{V}^{*} V V \boldsymbol{V} V 的共轭转置,是 n × n n\times n n×n 酉矩阵.

求解 U \boldsymbol{U} U, Σ \Sigma Σ, V \boldsymbol{V} V 矩阵

给定一个 A m × n \boldsymbol{A_{m\times n}} Am×n 的奇异值分解,有:
A ∗ A = V Σ ∗ U ∗ U Σ V ∗ = V ( Σ ∗ Σ ) V ∗ \boldsymbol{A^{*}A}=\boldsymbol{V}\Sigma^{*}\boldsymbol{U}^{*}\boldsymbol{U}\Sigma\boldsymbol{V}^{*}=\boldsymbol{V}(\Sigma^{*}\Sigma)\boldsymbol{V}^{*} AA=VΣUUΣV=V(ΣΣ)V
A A ∗ = U Σ V ∗ V Σ ∗ U ∗ = U ( Σ Σ ∗ ) U ∗ \boldsymbol{AA^{*}}=\boldsymbol{U}\Sigma\boldsymbol{V}^{*}\boldsymbol{V}\Sigma^{*}\boldsymbol{U}^{*}=\boldsymbol{U}(\Sigma\Sigma^{*})\boldsymbol{U}^{*} AA=UΣVVΣU=U(ΣΣ)U
关系式右边描述了关系式左边的特征值分解,于是:

  • A ∗ A \boldsymbol{A^{*}A} AA n n n个特征向量(右奇异向量)组成了 V \boldsymbol{V} V 的列向量
  • A A ∗ \boldsymbol{AA^{*}} AA m m m个特征向量(左奇异值向量)组成了 U \boldsymbol{U} U 的列向量
  • Σ \Sigma Σ 的非零对角元(非零奇异值)是 A ∗ A \boldsymbol{A^{*}A} AA A A ∗ \boldsymbol{AA^{*}} AA 的非零特征值(为啥相同?)的平方根,即 Σ = [ σ 1 0 0 0 0 σ 2 ⋯ 0 0 0 ⋱ σ r ⋮ ⋮ ⋮ ⋮ ] m × n \Sigma=\begin{bmatrix} \sigma_{1}& 0& 0& 0 \\ 0& \sigma_{2}& \cdots& 0 \\ 0& 0& \ddots& \sigma_{r} \\ \vdots& \vdots& \vdots& \vdots \end{bmatrix}_{m\times n} Σ=σ1000σ20000σrm×n,其中 r = r a n k ( A ) r=rank(\boldsymbol{A}) r=rank(A)(思考为什么?)且 m > r \mathit{m}>\mathit{r} m>r σ i = λ i ( i = 1 , 2 ⋯ r ) \sigma _{i}=\sqrt{\lambda _{i}}(i=1,2\cdots r) σi=λi (i=1,2r)

补充1: A A T \boldsymbol{AA^{T}} AAT 性质

  • 对称性: ( A T A ) T = A A T (\boldsymbol{A^{T}A})^{T}=\boldsymbol{AA^{T}} (ATA)T=AAT
  • 半正定性:对任意非零向量 x n × 1 x_{n\times1} xn×1 ,有 x T ( A T A ) x = ( A x ) T ( A x ) ⩾ 0 \boldsymbol{x^{T}}(\boldsymbol{A^{T}A})\boldsymbol{x}=(\boldsymbol{Ax})^{T}(\boldsymbol{Ax})\geqslant 0 xT(ATA)x=(Ax)T(Ax)0

补充2:奇异值分解 Vs.特征值分解
SVD_EigenDecomposition

补充3:正定和半正定矩阵的性质

  • 正定矩阵的行列式恒为正;
  • 实对称矩阵 A A A正定当且仅当 A A A与单位矩阵合同;
  • 对于 n n n阶实对称矩阵 A A A,下列条件是等价的:正定矩阵=一切主子式均为正=一切顺序主子式均为正=特征值均为正;
  • 对于 n n n阶实对称矩阵 A A A,下列条件是等价的:半正定矩阵=所有的主子式非负(顺序主子式非负并不能推出矩阵是半正定的)

SVD分解的应用
SVD-application

参考链接

  1. 中文维基 奇异值分解
  2. 中文维基 可对角化矩阵
  3. 博客园 奇异值分解(SVD)原理与在降维中的应用
  4. 知乎 矩阵对角化与奇异值分解
  5. Markdown语言教程
    Markdown 插入链接
    Markdown 编辑器语法指南
    MarkDown 插入数学公式实验大集合
    如何在Markdown中写公式

猜你喜欢

转载自blog.csdn.net/qq_33007293/article/details/101056388