UA MATH564 概率分布2 Poisson分布

UA MATH564 概率分布2 Poisson分布

Poisson分布 X P o i s ( λ ) X\sim Pois(\lambda) 的分布列为
P ( X = k ) = λ k e λ k ! , k = 0 , 1 , 2 , P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!},k=0,1,2,\cdots
下面陈述关于Poisson分布的五个有趣的性质,前三个性质是矩与生成函数有关的;后两个性质分别陈述Poisson分布的可加性以及Poisson分布与二项分布的关系。

性质1 Poisson分布的期望和方差都是 λ \lambda
证明
E X = k = 0 k λ k e λ k ! = k = 1 k λ k e λ k ! = λ k = 1 λ k 1 e λ ( k 1 ) ! = λ k = 0 λ k e λ k ! = λ E X 2 = k = 0 k 2 λ k e λ k ! = λ k = 0 ( k + 1 ) λ k e λ k ! = λ ( λ + 1 ) V a r X = E X 2 ( E X ) 2 = λ EX = \sum_{k=0}^{\infty} k\frac{\lambda^k e^{-\lambda}}{k!} = \sum_{k=1}^{\infty} k\frac{\lambda^k e^{-\lambda}}{k!} =\lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1} e^{-\lambda}}{(k-1)!} =\lambda \sum_{k=0}^{\infty} \frac{\lambda^{k} e^{-\lambda}}{k!} = \lambda \\ EX^2 = \sum_{k=0}^{\infty} k^2\frac{\lambda^k e^{-\lambda}}{k!} = \lambda \sum_{k=0}^{\infty} (k+1)\frac{\lambda^{k} e^{-\lambda}}{k!} = \lambda(\lambda+1) \\ VarX = EX^2 - (EX)^2 = \lambda
证毕

性质2 M X ( t ) = exp ( λ ( e t 1 ) ) M_X(t) = \exp(\lambda(e^t - 1))
证明
M X ( t ) = E e t X = k = 0 e t k λ k e λ k ! = e λ k = 0 ( λ e t ) k k ! = exp ( λ e t ) e λ = exp ( λ ( e t 1 ) ) M_X(t) = Ee^{tX} = \sum_{k=0}^{\infty} e^{tk} \frac{\lambda^k e^{-\lambda}}{k!} = e^{-\lambda}\sum_{k=0}^{\infty} \frac{(\lambda e^t)^k }{k!} = \exp(\lambda e^t)e^{-\lambda} = \exp(\lambda(e^t - 1))
证毕

性质3 E X r = j = 1 r S 2 ( r , j ) λ j EX^r = \sum_{j=1}^r S_2(r,j)\lambda^j
证明
E X r = k = 0 k r λ k e λ k ! = k = 0 λ k e λ L k 0 r k ! = e λ e λ L 0 r = e λ Δ 0 r = j = 0 λ j j ! Δ j 0 r = j = 1 r S 2 ( r , j ) λ j EX^r = \sum_{k=0}^{\infty} k^r \frac{\lambda^k e^{-\lambda}}{k!} = \sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda} L^k0^r}{k!} = e^{-\lambda} e^{\lambda L}0^r = e^{\lambda \Delta} 0^r \\ = \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} \Delta ^j 0^r = \sum_{j=1}^r S_2(r,j)\lambda^j
证毕

性质4 X i P o i s ( λ i ) , i = 1 , 2 , , n X_i \sim Pois(\lambda_i),i=1,2,\cdots,n ,且所有的 X i X_i 互相独立,则 i = 1 n X i P o i s ( i = 1 n λ i ) \sum_{i=1}^n X_i \sim Pois(\sum_{i=1}^n \lambda_i)
证明 因为所有的 X i X_i 互相独立,
M i = 1 n X i ( t ) = E e t i = 1 n X i = i = 1 n E e t X i = i = 1 n exp ( λ i ( e t 1 ) ) = exp ( ( e t 1 ) i = 1 n λ i ) M_{\sum_{i=1}^n X_i}(t) = Ee^{t\sum_{i=1}^n X_i} = \prod_{i=1}^n Ee^{tX_i} = \prod_{i=1}^n \exp(\lambda_i(e^t - 1)) = \exp((e^t - 1) \sum_{i=1}^n \lambda_i)
因此 i = 1 n X i P o i s ( i = 1 n λ i ) \sum_{i=1}^n X_i \sim Pois(\sum_{i=1}^n \lambda_i)
证毕

性质5 X 1 P o i s ( λ 1 ) X_1 \sim Pois(\lambda_1) X 2 P o i s ( λ 2 ) X_2 \sim Pois(\lambda_2) 互相独立,则 X 1 X 1 + X 2 = x B i n o m ( x , λ 1 λ 1 + λ 2 ) X_1|X_1+X_2 = x \sim Binom(x,\frac{\lambda_1}{\lambda_1+\lambda_2})
证明 根据性质4, X 1 + X 2 P o i s ( λ 1 + λ 2 ) X_1+X_2 \sim Pois(\lambda_1 + \lambda_2)
P ( X 1 = k X 1 + X 2 = x ) = P ( X 1 = k , X 1 + X 2 = x ) P ( X 1 + X 2 = x ) = P ( X 1 = k ) P ( X 2 = x k ) P ( X 1 + X 2 = x ) = λ 1 k e λ 1 k ! λ 2 x k 1 e λ 2 ( x k 1 ) ! ( λ 1 + λ 2 ) x e ( λ 1 + λ 2 ) x ! = x ! ( x k ) ! k ! ( λ 1 λ 1 + λ 2 ) k ( 1 λ 1 λ 1 + λ 2 ) x k = C x k ( λ 1 λ 1 + λ 2 ) k ( 1 λ 1 λ 1 + λ 2 ) x k P(X_1 = k|X_1+X_2 = x) = \frac{P(X_1 = k,X_1 + X_2 = x)}{P(X_1 + X_2 = x)} = \frac{P(X_1 = k)P(X_2 = x-k)}{P(X_1 + X_2 = x)} \\ = \frac{\frac{\lambda_1^k e^{-\lambda_1}}{k!} \frac{\lambda_2^{x-k_1}e^{-\lambda_2}}{(x-k_1)!}}{\frac{(\lambda_1 + \lambda_2)^x e^{-(\lambda_1 + \lambda_2)}}{x!}} = \frac{x!}{(x-k)!k!} \left( \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left( 1- \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^{x-k} \\ = C_x^k \left( \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left( 1- \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^{x-k}
因此 X 1 X 1 + X 2 = x B i n o m ( x , λ 1 λ 1 + λ 2 ) X_1|X_1+X_2 = x \sim Binom(x,\frac{\lambda_1}{\lambda_1+\lambda_2})
证毕

例(复合Poisson分布) 假设某只昆虫产卵数量为 N P o i s ( λ ) N\sim Pois(\lambda) ,每个卵被成功孵化的概率为 p p ,请问这只母体生产的子代昆虫数量 X X 服从什么分布?
显然 X N = n B i n o m ( n , p ) X|N=n \sim Binom(n,p)
P ( X = k ) = n = 0 P ( X = k , N = n ) = n = 0 P ( X = k N = n ) P ( N = n ) = n = 0 [ C n k p k ( 1 p ) n k ] λ n e λ n ! = n = k [ C n k p k ( 1 p ) n k ] λ n e λ n ! P(X=k) = \sum_{n=0}^{\infty} P(X=k,N=n) = \sum_{n=0}^{\infty} P(X=k|N=n)P(N=n) \\ = \sum_{n=0}^{\infty} [C_n^k p^k (1-p)^{n-k}] \frac{\lambda^n e^{-\lambda}}{n!} = \sum_{n=k}^{\infty} [C_n^k p^k (1-p)^{n-k}] \frac{\lambda^n e^{-\lambda}}{n!}
先化简一下被求和的式子
[ C n k p k ( 1 p ) n k ] λ n e λ n ! = n ! ( n k ) ! k ! p k ( 1 p ) n k λ n e λ n ! = ( λ p ) k k ! e λ [ λ ( 1 p ) ] n k ( n k ) ! [C_n^k p^k (1-p)^{n-k}] \frac{\lambda^n e^{-\lambda}}{n!} = \frac{n!}{(n-k)!k!}p^k (1-p)^{n-k} \frac{\lambda^n e^{-\lambda}}{n!} \\ = \frac{(\lambda p)^k}{k!}e^{-\lambda} \frac{[\lambda(1-p)]^{n-k}}{(n-k)!}
这样求和的结果就很明显了
n = k ( λ p ) k k ! e λ [ λ ( 1 p ) ] n k ( n k ) ! = ( λ p ) k k ! e λ n = k [ λ ( 1 p ) ] n k ( n k ) ! = ( λ p ) k k ! e λ e λ ( 1 p ) = ( λ p ) k e λ p k ! \sum_{n=k}^{\infty} \frac{(\lambda p)^k}{k!}e^{-\lambda} \frac{[\lambda(1-p)]^{n-k}}{(n-k)!} =\frac{(\lambda p)^k}{k!}e^{-\lambda} \sum_{n=k}^{\infty} \frac{[\lambda(1-p)]^{n-k}}{(n-k)!} \\ = \frac{(\lambda p)^k}{k!}e^{-\lambda} e^{\lambda(1-p)} = \frac{(\lambda p)^k e^{-\lambda p}}{k!}
因此 X P o i s ( λ p ) X \sim Pois(\lambda p)

猜你喜欢

转载自blog.csdn.net/weixin_44207974/article/details/106515906