三对角线性方程组(tridiagonal systems of equations)的求解

三对角线性方程组(tridiagonal systems of equations)

  三对角线性方程组,对于熟悉数值分析的同学来说,并不陌生,它经常出现在微分方程的数值求解和三次样条函数的插值问题中。三对角线性方程组可描述为以下方程组:

a i x i 1 + b i x i + c i x i + 1 = d i

其中 1 i n , a 1 = 0 , c n = 0. 以上方程组写成矩阵形式为 A x = d ,即:
[ b 1 c 1 0 a 2 b 2 c 2 a 3 b 3 c n 1 0 a n b n ] [ x 1 x 2 x 3 x n ] = [ d 1 d 2 d 3 d n ]

  三对角线性方程组的求解采用追赶法或者Thomas算法,它是Gauss消去法在三对角线性方程组这种特殊情形下的应用,因此,主要思想还是Gauss消去法,只是会更加简单些。我们将在下面的算法详述中给出该算法的具体求解过程。
  当然,该算法并不总是稳定的,但当系数矩阵 A 为严格对角占优矩阵(Strictly D iagonally Dominant, SDD)或对称正定矩阵(Symmetric Positive Definite, SPD)时,该算法稳定。对于不熟悉SDD或者SPD的读者,也不必担心,我们还会在我们的博客中介绍这类矩阵。现在,我们只要记住,该算法对于部分系数矩阵 A 是可以求解的。

算法详述

  追赶法或者Thomas算法的具体步骤如下:

  1. 创建新系数 c i d i 来代替原先的 a i , b i , c i ,公式如下:
    c i = { c 1 b 1 ; i = 1 c i b i a i c i 1 ; i = 2 , 3 , . . . , n 1 d i = { d 1 b 1 ; i = 1 d i a i d i 1 b i a i c i 1 ; i = 2 , 3 , . . . , n 1
  2. 改写原先的方程组 A x = d 如下:
    [ 1 c 1 0 0 . . . 0 0 1 c 2 0 . . . 0 0 0 1 c 3 0 0 . . . . . . . . c n 1 0 0 0 0 0 1 ] [ x 1 x 2 x 3 . . . x k ] = [ d 1 d 2 d 3 . . . d n ]
  3. 计算解向量 x ,如下:
    x n = d n , x i = d i c i x i + 1 , i = n 1 , n 2 , . . . , 2 , 1

  以上算法得到的解向量 x 即为原方程 A x = d 的解。
  下面,我们来证明该算法的正确性,只需要证明该算法保持原方程组的形式不变。
  首先,当 i = 1 时,

1 x 1 + c 1 x 2 = d 1 1 x 1 + c 1 b 1 x 2 = d 1 b 1 b 1 x 1 + c 1 x 2 = d 1

  当 i > 1 时,
1 x i + c i x i + 1 = d i 1 x i + c i b i a i c i 1 x i + 1 = d i a i d i 1 b i a i c i 1 ( b i a i c i 1 ) x i + c i x i + 1 = d i a i d i 1

结合 a i x i 1 + b i x i + c i x i + 1 = d i ,只需要证明 x i 1 + c i 1 x i = d i 1 ,而这已经在该算法的第(3)步的中的计算 x i 1 中给出。证明完毕。

Python实现

  我们将要求解的线性方程组如下:

[ 4 1 0 0 0 1 4 1 0 0 0 1 4 1 0 0 0 1 4 1 0 0 0 1 4 ] [ x 1 x 2 x 3 x 4 x 5 ] = [ 1 0.5 1 3 2 ]

  接下来,我们将用Python来实现该算法,函数为TDMA,输入参数为列表a,b,c,d, 输出为解向量x,代码如下:

# use Thomas Method to solve tridiagonal linear equation
# algorithm reference: https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

import numpy as np

# parameter: a,b,c,d are list-like of same length
# tridiagonal linear equation: Ax=d
# b: main diagonal of matrix A
# a: main diagonal below of matrix A
# c: main diagonal upper of matrix A
# d: Ax=d
# return: x(type=list), the solution of Ax=d
def TDMA(a,b,c,d):

    try:
        n = len(d)    # order of tridiagonal square matrix

        # use a,b,c to create matrix A, which is not necessary in the algorithm
        A = np.array([[0]*n]*n, dtype='float64')

        for i in range(n):
            A[i,i] = b[i]
            if i > 0:
                A[i, i-1] = a[i]
            if i < n-1:
                A[i, i+1] = c[i]

        # new list of modified coefficients
        c_1 = [0]*n
        d_1 = [0]*n

        for i in range(n):
            if not i:
                c_1[i] = c[i]/b[i]
                d_1[i] = d[i] / b[i]
            else:
                c_1[i] = c[i]/(b[i]-c_1[i-1]*a[i])
                d_1[i] = (d[i]-d_1[i-1]*a[i])/(b[i]-c_1[i-1] * a[i])

        # x: solution of Ax=d
        x = [0]*n

        for i in range(n-1, -1, -1):
            if i == n-1:
                x[i] = d_1[i]
            else:
                x[i] = d_1[i]-c_1[i]*x[i+1]

        x = [round(_, 4) for _ in x]

        return x

    except Exception as e:
        return e

def main():

    a = [0, 1, 1, 1, 1]
    b = [4, 4, 4, 4, 4]
    c = [1, 1, 1, 1, 0]
    d = [1, 0.5, -1, 3, 2]

    '''
    a = [0, 2, 1, 3]
    b = [1, 1, 2, 1]
    c = [2, 3, 0.5, 0]
    d = [2, -1, 1, 3]
    '''

    x = TDMA(a, b, c, d)
    print('The solution is %s'%x)

main()

运行该程序,输出结果为:

The solution is [0.2, 0.2, -0.5, 0.8, 0.3]

  本算法的Github地址为: https://github.com/percent4/Numeric_Analysis/blob/master/TDMA.py .
  最后再次声明,追赶法或者Thomas算法并不是对所有的三对角矩阵都是有效的,只是部分三对角矩阵可行。

参考文献

  1. https://www.quantstart.com/articles/Tridiagonal-Matrix-Solver-via-Thomas-Algorithm
  2. https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
  3. https://wenku.baidu.com/view/336bafa3daef5ef7ba0d3ccc.html

猜你喜欢

转载自blog.csdn.net/jclian91/article/details/80251244