计算智能——粒子群算法的寻优算法

粒子群算法的寻优算法

1.算法介绍

粒子群优化算法的基本思想是通过群体中个体之间的协作和信息共享来寻找最优解。
PSO的优势在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。

1.1问题提出

设想这样一个场景:一群鸟在随机的搜索食物。 在这个区域里只有一块食物,所有的鸟都不知道食物在哪。但是它们知道自己当前的位置距离食物还有多远。 那么找到食物的最优策略是什么?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

1.2问题抽象

鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,粒子在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速度表示为矢量Vi=(v1,v2,…,vN)。每个粒子都有一个由目标函数决定的适应值(fitness value),并且知道自己到目前为止发现的最好位置(pbest)和现在的位置Xi。这个可以看作是粒子自己的飞行经验。除此之外,每个粒子还知道到目前为止整个群体中所有粒子发现的最好位置(gbest)(gbest是pbest中的最好值)。这个可以看作是粒子同伴的经验。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。

1.3算法描述

PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。
在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。
i=1,2,…,M,M是该群体中粒子的总数;Vi 是粒子的速度; pbest和gbest如前定义; rand()是介于(0、1)之间的随机数; xi是粒子的当前位置。c1和c2是学习因子,通常取c1= c2=2 在每一维,粒子都有一个最大限制速度Vmax,如果某一维的速度超过设定的Vmax ,那么这一维的速度就被限定为Vmax 。( Vmax >0)以上面两个公式为基础,形成了后来PSO 的标准形式。

2.基本流程

Step1:初始化一群微粒(群体规模为m),包括随机位置和速度;

Step2:评价每个微粒的适应度;

Step3:对每个微粒,将其适应值与其经过的最好位置 pbest作比较,如果较好,则将其作为当前的最好位置pbest;

Step4:对每个微粒,将其适应值与其经过的最好位置 gbest作比较,如果较好,则将其作为当前的最好位置gbest;

Step5:根据(2)、(3)式调整微粒速度和位置;

Step6:未达到结束条件则转Step2。

迭代终止条件根据具体问题一般选为最大迭代次数Gk或和微粒群迄今为止搜索到的最优位置满足预定最小适应阈值。

3.代码实现

POS:

%% 清空环境
clc
clear

%% 参数初始化
%粒子群算法中的三个参数
c1 = 1.49445;%加速因子
c2 = 1.49445;
w=0.8   %惯性权重

maxgen=1000;   % 进化次s数  
sizepop=200;   %种群规模

Vmax=1;       %限制速度围
Vmin=-1;     
popmax=5;    %变量取值范围
popmin=-5;
dim=10;       %适应度函数维数

func=1;       %选择待优化的函数,1为Rastrigin,2为Schaffer,3为Griewank
Drawfunc(func);%画出待优化的函数,只画出二维情况作为可视化输出

%% 产生初始粒子和速度
for i=1:sizepop
    %随机产生一个种群
    pop(i,:)=popmax*rands(1,dim);    %初始种群
    V(i,:)=Vmax*rands(1,dim);             %初始化速度
                                     %计算适应度
    fitness(i)=fun(pop(i,:),func);   %粒子的适应度
end

%% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
gbest=pop(bestindex,:);   %全局最佳
pbest=pop;                %个体最佳
fitnesspbest=fitness;     %个体最佳适应度值
fitnessgbest=bestfitness; %全局最佳适应度值

%% 迭代寻优
for i=1:maxgen
    
    fprintf('第%d代,',i);
    fprintf('最优适应度%f\n',fitnessgbest);
    for j=1:sizepop
        
        %速度更新
        V(j,:) = w*V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:)); %根据个体最优pbest和群体最优gbest计算下一时刻速度
        V(j,find(V(j,:)>Vmax))=Vmax;   %限制速度不能太大
        V(j,find(V(j,:)<Vmin))=Vmin;
        
        %种群更新
        pop(j,:)=pop(j,:)+0.5*V(j,:);       %位置更新
        pop(j,find(pop(j,:)>popmax))=popmax;%坐标不能超出范围
        pop(j,find(pop(j,:)<popmin))=popmin;
        
        if rand>0.98                         %加入变异种子,用于跳出局部最优值
            pop(j,:)=rands(1,dim);
        end
        
        %更新第j个粒子的适应度值
        fitness(j)=fun(pop(j,:),func); 
   
    end
    
    for j=1:sizepop
        
        %个体最优更新
        if fitness(j) < fitnesspbest(j)
            pbest(j,:) = pop(j,:);
            fitnesspbest(j) = fitness(j);
        end
        
        %群体最优更新
        if fitness(j) < fitnessgbest
            gbest = pop(j,:);
            fitnessgbest = fitness(j);
        end
    end 
    yy(i)=fitnessgbest;    
        
end
%% 结果分析
figure;
plot(yy)
title('最优个体适应度','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);

POSMutation

%% 清空环境
clc
clear

%% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;

maxgen=500;   % 进化次数  
sizepop=100;   %种群规模

Vmax=1;
Vmin=-1;
popmax=5;
popmin=-5;

%% 产生初始粒子和速度
for i=1:sizepop
    %随机产生一个种群
    pop(i,:)=5*rands(1,2);    %初始种群
    V(i,:)=rands(1,2);  %初始化速度
    %计算适应度
    fitness(i)=fun(pop(i,:));   %染色体的适应度
end

%% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:);   %全局最佳
gbest=pop;    %个体最佳
fitnessgbest=fitness;   %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值

%% 迭代寻优
for i=1:maxgen
    
    for j=1:sizepop
        
        %速度更新
        V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
        V(j,find(V(j,:)>Vmax))=Vmax;
        V(j,find(V(j,:)<Vmin))=Vmin;
        
        %种群更新
        pop(j,:)=pop(j,:)+0.5*V(j,:);
        pop(j,find(pop(j,:)>popmax))=popmax;
        pop(j,find(pop(j,:)<popmin))=popmin;
        
        if rand>0.98     
            pop(j,:)=rands(1,2);
        end
        
        %适应度值
        fitness(j)=fun(pop(j,:)); 
   
    end
    
    for j=1:sizepop
        
        %个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j,:) = pop(j,:);
            fitnessgbest(j) = fitness(j);
        end
        
        %群体最优更新
        if fitness(j) < fitnesszbest
            zbest = pop(j,:);
            fitnesszbest = fitness(j);
        end
    end 
    yy(i)=fitnesszbest;    
        
end
%% 结果分析
plot(yy)
title('最优个体适应度','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);

Drawfunc

function Drawfunc(label)

x=-5:0.05:5;%41列的向量
if label==1
    y = x;
    [X,Y] = meshgrid(x,y);
    [row,col] = size(X);
    for  l = 1 :col
         for  h = 1 :row
            z(h,l) = Rastrigin([X(h,l),Y(h,l)]);
        end
    end
    surf(X,Y,z);
    shading interp
    xlabel('x1-axis'),ylabel('x2-axis'),zlabel('f-axis'); 
    title('mesh'); 
end

if label==2
    y = x;
    [X,Y] = meshgrid(x,y);
    [row,col] = size(X);
    for  l = 1 :col
         for  h = 1 :row
            z(h,l) = Schaffer([X(h,l),Y(h,l)]);
        end
    end
    surf(X,Y,z);
    shading interp 
    xlabel('x1-axis'),ylabel('x2-axis'),zlabel('f-axis'); 
    title('mesh'); 
end

if label==3
    y = x;
    [X,Y] = meshgrid(x,y);
    [row,col] = size(X);
    for  l = 1 :col
         for  h = 1 :row
            z(h,l) = Griewank([X(h,l),Y(h,l)]);
        end
    end
    surf(X,Y,z);
    shading interp 
    xlabel('x1-axis'),ylabel('x2-axis'),zlabel('f-axis'); 
    title('mesh'); 
end

fun

function y = fun(x,label)
%函数用于计算粒子适应度值
%x           input           输入粒子 
%y           output          粒子适应度值 
if label==1
    y=Rastrigin(x);
elseif label==2
    y=Schaffer(x);
else
    y= Griewank(x);
end

fun1

function y = fun(x)
%函数用于计算粒子适应度值
%x           input           输入粒子 
%y           output          粒子适应度值 

y=-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+exp(1);

%y=x(1)^2-10*cos(2*pi*x(1))+10+x(2)^2-10*cos(2*pi*x(2))+10;

GireWank

function y=Griewank(x)
%Griewan函数
%输入x,给出相应的y值,在x=(0,0,…,0)处有全局极小点0.
%编制人:
%编制日期:
[row,col]=size(x);
if row>1
    error('输入的参数错误');
end
y1=1/4000*sum(x.^2);
y2=1;
for h=1:col
    y2=y2*cos(x(h)/sqrt(h));
end
y=y1-y2+1;
%y=-y;

Rastrigin

function y = Rastrigin(x)
% Rastrigin函数
% 输入x,给出相应的y值,在x = ( 0 , 0 ,…, 0 )处有全局极小点0.
% 编制人:
% 编制日期:
[row,col] = size(x);
if  row > 1 
    error( ' 输入的参数错误 ' );
end
y =sum(x.^2-10*cos(2*pi*x)+10);
%y =-y;

Schaffer

function y=Schaffer(x)

[row,col]=size(x);
if row>1
    error('输入的参数错误');
end
y1=x(1,1);
y2=x(1,2);
temp=y1^2+y2^2;
y=0.5-(sin(sqrt(temp))^2-0.5)/(1+0.001*temp)^2;
y=-y;

4.结果分析

加速因子和惯性权重对结果的影响:

保持种群规模为200,维度为10不变
c1、c2取值范围(1,2)
惯性权重取值范围(0.2,0.8)
在这里插入图片描述
1、当初始迭代时,惯性权重w比较大,具有很好的全局搜索能力,而局部搜索能力较弱。随着迭代次数的累加,w的值越来越小,粒子的速度也越来越小,此时粒子具有很好的局部搜索能力,而全局搜索能力较弱。
2、动态改变学习因子,可以平衡算法的全局搜索能力和局部搜索能力,这样提高了收敛速度和最佳适应度的同时,又保证了算法的收敛。w将影响全局和局部搜索能力,w值越大,全局搜索能力强,局部搜索能力弱;反之,局部搜索能力强,全局搜索能力弱。在迭代后期全局搜索能力弱容易陷入局部极值。

种族规模和维度对结果的影响:

保持c1,c2为1,惯性权重为0.8不变
种族规模的取值范围为(10,1000)
维度的取值范围为(1,1000)
在这里插入图片描述
1、无论维度大小,种群规模越大速度越慢搜索到的最优适应度值也越精确。
2、种族规模越大,搜索的精度越高,搜索的稳定性越好,但收敛速度较慢,种群规模小可以减少运行时间。
3、种群规模的改变对最优适应度的影响较小。当种群规模达到1000的时候最优适应度甚至比种群规模为200的最优适应度更好。

发布了9 篇原创文章 · 获赞 0 · 访问量 397

猜你喜欢

转载自blog.csdn.net/monetvan/article/details/103367580