动手学深度学习-循环神经网络进阶(ModernRNN)

参考伯禹学习平台《动手学深度学习》课程内容内容撰写的学习笔记
原文链接:https://www.boyuai.com/elites/course/cZu18YmweLv10OeV/video/qC-4p–OiYRK9l3eHKAju
感谢伯禹平台,Datawhale,和鲸,AWS给我们提供的免费学习机会!!
总的学习感受:伯禹的课程做的很好,课程非常系统,每个较高级别的课程都会有需要掌握的前续基础知识的介绍,因此很适合本人这种基础较差的同学学习,建议基础较差的同学可以关注伯禹的其他课程:
数学基础:https://www.boyuai.com/elites/course/D91JM0bv72Zop1D3
机器学习基础:https://www.boyuai.com/elites/course/5ICEBwpbHVwwnK3C

GRU

RNN存在的问题:梯度较容易出现衰减或爆炸(BPTT)
⻔控循环神经⽹络:捕捉时间序列中时间步距离较⼤的依赖关系
RNN:

Image Name

H t = ϕ ( X t W x h + H t 1 W h h + b h ) H_{t} = ϕ(X_{t}W_{xh} + H_{t-1}W_{hh} + b_{h})
GRU:

Image Name

R t = σ ( X t W x r + H t 1 W h r + b r ) Z t = σ ( X t W x z + H t 1 W h z + b z ) H ~ t = t a n h ( X t W x h + ( R t H t 1 ) W h h + b h ) H t = Z t H t 1 + ( 1 Z t ) H ~ t R_{t} = σ(X_tW_{xr} + H_{t−1}W_{hr} + b_r)\\ Z_{t} = σ(X_tW_{xz} + H_{t−1}W_{hz} + b_z)\\ \widetilde{H}_t = tanh(X_tW_{xh} + (R_t ⊙H_{t−1})W_{hh} + b_h)\\ H_t = Z_t⊙H_{t−1} + (1−Z_t)⊙\widetilde{H}_t
重置⻔有助于捕捉时间序列⾥短期的依赖关系; (大小都是h)
•** 更新⻔有助于捕捉时间序列⾥⻓期的依赖关系。**

LSTM

** 长短期记忆long short-term memory **:
遗忘门:控制上一时间步的记忆细胞
输入门:控制当前时间步的输入
输出门:控制从记忆细胞到隐藏状态
记忆细胞:⼀种特殊的隐藏状态的信息的流动

Image Name

I t = σ ( X t W x i + H t 1 W h i + b i ) F t = σ ( X t W x f + H t 1 W h f + b f ) O t = σ ( X t W x o + H t 1 W h o + b o ) C ~ t = t a n h ( X t W x c + H t 1 W h c + b c ) C t = F t C t 1 + I t C ~ t H t = O t t a n h ( C t ) I_t = σ(X_tW_{xi} + H_{t−1}W_{hi} + b_i) \\ F_t = σ(X_tW_{xf} + H_{t−1}W_{hf} + b_f)\\ O_t = σ(X_tW_{xo} + H_{t−1}W_{ho} + b_o)\\ \widetilde{C}_t = tanh(X_tW_{xc} + H_{t−1}W_{hc} + b_c)\\ C_t = F_t ⊙C_{t−1} + I_t ⊙\widetilde{C}_t\\ H_t = O_t⊙tanh(C_t)

深度循环神经网络

Image Name

H t ( 1 ) = ϕ ( X t W x h ( 1 ) + H t 1 ( 1 ) W h h ( 1 ) + b h ( 1 ) ) H t ( ) = ϕ ( H t ( 1 ) W x h ( ) + H t 1 ( ) W h h ( ) + b h ( ) ) O t = H t ( L ) W h q + b q \boldsymbol{H}_t^{(1)} = \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh}^{(1)} + \boldsymbol{H}_{t-1}^{(1)} \boldsymbol{W}_{hh}^{(1)} + \boldsymbol{b}_h^{(1)})\\ \boldsymbol{H}_t^{(\ell)} = \phi(\boldsymbol{H}_t^{(\ell-1)} \boldsymbol{W}_{xh}^{(\ell)} + \boldsymbol{H}_{t-1}^{(\ell)} \boldsymbol{W}_{hh}^{(\ell)} + \boldsymbol{b}_h^{(\ell)})\\ \boldsymbol{O}_t = \boldsymbol{H}_t^{(L)} \boldsymbol{W}_{hq} + \boldsymbol{b}_q

双向循环神经网络

Image Name

H t = ϕ ( X t W x h ( f ) + H t 1 W h h ( f ) + b h ( f ) ) H t = ϕ ( X t W x h ( b ) + H t + 1 W h h ( b ) + b h ( b ) ) \begin{aligned} \overrightarrow{\boldsymbol{H}}_t &= \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh}^{(f)} + \overrightarrow{\boldsymbol{H}}_{t-1} \boldsymbol{W}_{hh}^{(f)} + \boldsymbol{b}_h^{(f)})\\ \overleftarrow{\boldsymbol{H}}_t &= \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh}^{(b)} + \overleftarrow{\boldsymbol{H}}_{t+1} \boldsymbol{W}_{hh}^{(b)} + \boldsymbol{b}_h^{(b)}) \end{aligned}
H t = ( H t , H t ) \boldsymbol{H}_t=(\overrightarrow{\boldsymbol{H}}_{t}, \overleftarrow{\boldsymbol{H}}_t)
O t = H t W h q + b q \boldsymbol{O}_t = \boldsymbol{H}_t \boldsymbol{W}_{hq} + \boldsymbol{b}_q

可以通过前后的词来估计当前的词,更加准确。

发布了17 篇原创文章 · 获赞 1 · 访问量 617

猜你喜欢

转载自blog.csdn.net/water19111213/article/details/104364720
今日推荐