具体数学之数论

1.整除性:
m \ n m > 0 m n m \backslash n \Leftrightarrow m > 0,并且m可以整除n

欧几里得算法求解最大公约数
gcd ( 0 , n ) = n \operatorname{gcd}(0, n)=n
gcd ( m , n ) = gcd ( n   m o d   m , m ) , m > 0 \operatorname{gcd}(m, n)=\operatorname{gcd}(n \bmod m, m), \quad m>0

2.素数:
eg:证明有无限多个素数
假设仅有有限个素数,比如k个:2,3,5,…, P k P_k .那么考虑 M = 2 × 3 × 5 × × P k + 1 M=2 \times 3 \times 5 \times \cdots \times P_{k}+1
我们发现M不能被这已有的k个素数中的任何一个整除,那么肯定有另一个素数可以整除M,或许M本身就是一个素数。因此与假设相矛盾!所以存在无穷多个素数。

3.阶乘的因子:
斯特林公式: n ! 2 π n ( n e ) n n ! \sim \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}
确定能整除n!的p的最大幂:
在这里插入图片描述
因此, 10 10! 能被 2 8 2^{8} 整除

4.互素: m n m \perp n : m与n互素
m n m , n g c d ( m , n ) = 1 m \perp n \Leftrightarrow m, n是整数,且gcd(m,n)=1
m / gcd ( m , n ) n / gcd ( m , n ) m / \operatorname{gcd}(m, n) \perp n / \operatorname{gcd}(m, n)
k m k n k m n k \perp m \mathrm且 k \perp n \Leftrightarrow k \perp m n

在这里插入图片描述在这里插入图片描述
从两个分数 ( 0 1 , 1 0 ) \left(\frac{0}{1}, \frac{1}{0}\right) 开始,依次在两个相邻的分数 m n \frac{m}{n} m n \frac{m^{\prime}}{n^{\prime}} 之间插入 m + m n + n \frac{m+m^{\prime}}{n+n^{\prime}} m + m n + n \frac{m+m^{\prime}}{n+n^{\prime}} 称为中位分数。
在这里插入图片描述
如果 m / n m / n m / n m^{\prime} / n^{\prime} 是相邻分数,那么有 m n m n = 1 m^{\prime} n-m n^{\prime}=1
用如下形式来表示,第一列表示 m / n m / n ,可见分子在下,分母在上,第二列也一样:
M ( S ) = ( n n m m ) M(S)=\left( \begin{array}{ll}{n} & {n^{\prime}} \\ {m} & {m^{\prime}}\end{array}\right)
M ( S L ) = ( n n + n m m + m ) = ( n n m m ) ( 1 1 0 1 ) = M ( S ) ( 1 1 0 1 ) M(S L)=\left( \begin{array}{cc}{n} & {n+n^{\prime}} \\ {m} & {m+m^{\prime}}\end{array}\right)=\left( \begin{array}{cc}{n} & {n^{\prime}} \\ {m} & {m^{\prime}}\end{array}\right) \left( \begin{array}{ll}{1} & {1} \\ {0} & {1}\end{array}\right)=M(S) \left( \begin{array}{ll}{1} & {1} \\ {0} & {1}\end{array}\right)
M ( S R ) = ( n + n n m + m m ) = M ( S ) ( 1 0 1 1 ) M(S R)=\left( \begin{array}{cc}{n+n^{\prime}} & {n^{\prime}} \\ {m+m^{\prime}} & {m^{\prime}}\end{array}\right)=M(S) \left( \begin{array}{ll}{1} & {0} \\ {1} & {1}\end{array}\right)
可将L和R定义为:
L = ( 1 1 0 1 ) , R = ( 1 0 1 1 ) L=\left( \begin{array}{ll}{1} & {1} \\ {0} & {1}\end{array}\right), \quad R=\left( \begin{array}{ll}{1} & {0} \\ {1} & {1}\end{array}\right)

S = ( n n m m ) ; R S = ( n n m + n m + n ) S=\left( \begin{array}{cc}{n} & {n^{\prime}} \\ {m} & {m^{\prime}}\end{array}\right) ; \quad R S=\left( \begin{array}{cc}{n} & {n^{\prime}} \\ {m+n} & {m^{\prime}+n^{\prime}}\end{array}\right)
\Rightarrow f ( S ) = ( m + m ) / ( n + n ) f(S)=\left(m+m^{\prime}\right) /\left(n+n^{\prime}\right) f ( R S ) = ( ( m + n ) + ( m + n ) ) / ( n + n ) f(R S)=\left((m+n)+\left(m^{\prime}+n^{\prime}\right)\right) /\left(n+n^{\prime}\right)
\Rightarrow f ( R S ) = f ( S ) + 1 f(R S)=f(S)+1
\Rightarrow 往右走意味着将分母+分子作为分子
同理, L S = ( m + n m + n m m ) \quad L S=\left( \begin{array}{cc}{m+n} & {m^{\prime}+n^{\prime}} \\ {m} & {m^{\prime}}\end{array}\right)
f ( L S ) = ( m + m ) / ( ( m + n ) + ( m + n ) ) f(LS)= \left(m+m^{\prime}\right)/\left((m+n)+\left(m^{\prime}+n^{\prime}\right)\right)
\Rightarrow 往左走意味着将分子+分母作为分母
5.mod:同余关系
a b (   m o d   m ) a   m o d   m = b   m o d   m a \equiv b \quad(\bmod m) \quad \Leftrightarrow \quad a \bmod m=b \bmod m
m ( a b ) \Leftrightarrow m|(a-b)
\Leftrightarrow a-b is the multiple of m

a b c d a + c b + d (   m o d   m ) a \equiv b \quad \mathrm且\quad c \equiv d \quad \Rightarrow \quad a+c \equiv b+d \quad(\bmod m)
a b c d a c b d (   m o d   m ) a \equiv b \quad \mathrm且\quad c \equiv d \quad \Rightarrow \quad a-c \equiv b-d \quad(\bmod m)
if a d b d (   m o d   m ) a d \equiv b d(\bmod m) ,we can’t always conclude that a b a \equiv b
比如: 3 × 2 5 × 2 (   m o d   4 ) 3 \times 2 \equiv 5 \times 2(\bmod 4) 但是 3 ̸ 5 3 \not\equiv5
但是如果d和m互素,那么有
a d b d a b (   m o d   m ) , a , b , d , m , d m a d \equiv b d \quad \Leftrightarrow \quad a \equiv b \quad(\bmod m),a,b,d,m,d \perp m
m d ( a b ) \Rightarrow m|d(a-b)
m ( a b ) \Rightarrow m|(a-b)
将除法应用到同余式的另一种方法,对模作除法:
a d b d (   m o d   m d ) a b (   m o d   m ) , d 0 a d \equiv b d \quad(\bmod m d) \quad \Leftrightarrow \quad a \equiv b \quad(\bmod m), d \neq 0

发布了129 篇原创文章 · 获赞 105 · 访问量 23万+

猜你喜欢

转载自blog.csdn.net/sunshine_lyn/article/details/89787581