人工智能实践:Tensorflow笔记(五):卷积网络基础与实践

卷积网络

为了避免过拟合现象的发生,我们在实际应用时,往往不会将原始图片直接喂入全连接网络,会先对原始图片进行特征提取,把提取到的特征喂给全连接网络

卷积便是一种有效提取图片特征的方法

输出图片边长= (输入图片边长-卷积核长+1)/步长

有时候会在输入图片周围进行全0填充,这样可以保证输出图片的尺寸和输入图片一致

池化分为最大池化和均值池化

dropout可以有效减少过拟合

Lenet5卷积神经网络模型 


LeNet-5:是Yann LeCun在1998年设计的用于手写数字识别的卷积神经网络,当年美国大多数银行就是用它来识别支票上面的手写数字的,它是早期卷积神经网络中最有代表性的实验系统之一。

LenNet-5共有7层(2个卷积层、2个下抽样层(池化层)、3个全连接层),每层都包含不同数量的训练参数
 

mnist_lenet5_backward.py

# coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_lenet5_forward
import os
import numpy as np

BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.005
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001
STEPS = 50000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "mnist_model"


def backward(mnist):
    x = tf.placeholder(tf.float32, [
        BATCH_SIZE,
        mnist_lenet5_forward.IMAGE_SIZE,
        mnist_lenet5_forward.IMAGE_SIZE,
        mnist_lenet5_forward.NUM_CHANNELS])
    y_ = tf.placeholder(tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE])
    y = mnist_lenet5_forward.forward(x, True, REGULARIZER)
    global_step = tf.Variable(0, trainable=False)

    ce = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=y, labels=tf.argmax(y_, 1))
    cem = tf.reduce_mean(ce)
    loss = cem + tf.add_n(tf.get_collection('losses'))

    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,
        mnist.train.num_examples / BATCH_SIZE,
        LEARNING_RATE_DECAY,
        staircase=True)

    train_step = tf.train.GradientDescentOptimizer(
        learning_rate).minimize(loss, global_step=global_step)

    ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    ema_op = ema.apply(tf.trainable_variables())
    with tf.control_dependencies([train_step, ema_op]):
        train_op = tf.no_op(name='train')

    saver = tf.train.Saver()

    with tf.Session() as sess:
        init_op = tf.global_variables_initializer()
        sess.run(init_op)

        ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)

        for i in range(STEPS):
            xs, ys = mnist.train.next_batch(BATCH_SIZE)
            reshaped_xs = np.reshape(xs, (
                BATCH_SIZE,
                mnist_lenet5_forward.IMAGE_SIZE,
                mnist_lenet5_forward.IMAGE_SIZE,
                mnist_lenet5_forward.NUM_CHANNELS))
            _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={
                                           x: reshaped_xs, y_: ys})
            if i % 100 == 0:
                print("After %d training step(s), loss on training batch is %g." % (
                    step, loss_value))
                saver.save(sess, os.path.join(MODEL_SAVE_PATH,
                                              MODEL_NAME), global_step=global_step)


def main():
    mnist = input_data.read_data_sets("./data/", one_hot=True)
    backward(mnist)


if __name__ == '__main__':
    main()


mnist_lenet5_forward.py

# coding:utf-8
import tensorflow as tf
IMAGE_SIZE = 28
NUM_CHANNELS = 1 #灰度图,所以通道数是1
#卷积核个数和卷积核大小
CONV1_SIZE = 5
CONV1_KERNEL_NUM = 32
CONV2_SIZE = 5
CONV2_KERNEL_NUM = 64
FC_SIZE = 512
OUTPUT_NODE = 10


def get_weight(shape, regularizer):
    w = tf.Variable(tf.truncated_normal(shape, stddev=0.1))
    if regularizer != None:
        tf.add_to_collection(
            'losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
    return w


def get_bias(shape):
    b = tf.Variable(tf.zeros(shape))
    return b


def conv2d(x, w):
    return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')


def forward(x, train, regularizer):   #给出前向传播的网络结构
    conv1_w = get_weight(
        [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_KERNEL_NUM], regularizer)
    conv1_b = get_bias([CONV1_KERNEL_NUM])
    conv1 = conv2d(x, conv1_w)
    relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_b))
    pool1 = max_pool_2x2(relu1)

    conv2_w = get_weight(
        [CONV2_SIZE, CONV2_SIZE, CONV1_KERNEL_NUM, CONV2_KERNEL_NUM], regularizer)
    conv2_b = get_bias([CONV2_KERNEL_NUM])
    conv2 = conv2d(pool1, conv2_w)
    relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_b))
    pool2 = max_pool_2x2(relu2)

    pool_shape = pool2.get_shape().as_list()
    nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
    reshaped = tf.reshape(pool2, [pool_shape[0], nodes])

    fc1_w = get_weight([nodes, FC_SIZE], regularizer)
    fc1_b = get_bias([FC_SIZE])
    fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_w) + fc1_b)
    if train:
        fc1 = tf.nn.dropout(fc1, 0.5)

    fc2_w = get_weight([FC_SIZE, OUTPUT_NODE], regularizer)
    fc2_b = get_bias([OUTPUT_NODE])
    y = tf.matmul(fc1, fc2_w) + fc2_b
    return y


mnist_lenet5_test.py

# coding:utf-8
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_lenet5_forward
import mnist_lenet5_backward
import numpy as np

TEST_INTERVAL_SECS = 5


def test(mnist):
    with tf.Graph().as_default() as g:
        x = tf.placeholder(tf.float32, [
            mnist.test.num_examples,
            mnist_lenet5_forward.IMAGE_SIZE,
            mnist_lenet5_forward.IMAGE_SIZE,
            mnist_lenet5_forward.NUM_CHANNELS])
        y_ = tf.placeholder(
            tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE])
        y = mnist_lenet5_forward.forward(x, False, None)

        ema = tf.train.ExponentialMovingAverage(
            mnist_lenet5_backward.MOVING_AVERAGE_DECAY)
        ema_restore = ema.variables_to_restore()
        saver = tf.train.Saver(ema_restore)

        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

        while True:
            with tf.Session() as sess:
                ckpt = tf.train.get_checkpoint_state(
                    mnist_lenet5_backward.MODEL_SAVE_PATH)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)

                    global_step = ckpt.model_checkpoint_path.split(
                        '/')[-1].split('-')[-1]
                    reshaped_x = np.reshape(mnist.test.images, (
                        mnist.test.num_examples,
                        mnist_lenet5_forward.IMAGE_SIZE,
                        mnist_lenet5_forward.IMAGE_SIZE,
                        mnist_lenet5_forward.NUM_CHANNELS))
                    accuracy_score = sess.run(
                        accuracy, feed_dict={x: reshaped_x, y_: mnist.test.labels})
                    print("After %s training step(s), test accuracy = %g" %
                          (global_step, accuracy_score))
                else:
                    print('No checkpoint file found')
                    return
            time.sleep(TEST_INTERVAL_SECS)


def main():
    mnist = input_data.read_data_sets("./data/", one_hot=True)
    test(mnist)


if __name__ == '__main__':
    main()

复现已有的卷积神经网络


代码

https://github.com/cj0012/AI-Practice-Tensorflow-Notes/tree/master/vgg

发布了304 篇原创文章 · 获赞 148 · 访问量 14万+

猜你喜欢

转载自blog.csdn.net/hxxjxw/article/details/100047965