染色图(数论分块)

题目:
定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任何一条边 (u,v),都有 f(u)≠f(v)。

定义函数 g(n,k) 的值为所有包含 n 个点的无自环、无重边的 k 可染色无向图中的边数最大值。举例来说,g(3,1)=0,g(3,2)=2,g(3,3)=3。

现在给出三个整数 n,l,r,你需要求解: 在l到r区间内g(n,i)的和 mod 998244353

输入
5
3 1 1
3 2 2
5 2 4
10 3 9
1000 123 789

输出
0
2
23
280
332539617
思路,易知当颜色数目为k时,可以将图分成好几个有k个点的块,连成完全图,然后再将这些块连起来,一个一个求的代码是这样的

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<cstdlib>
#include<map>
#include<set>
#define ll long long
#define llu unsigned ll
#define ld long double
#define pr make_pair
#define pb push_back
#define x first
#define y second
#define int ll
using namespace std;
const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const int mod=1e9+7;
const int maxn=100100;
int a[maxn],b[maxn];
int n,m,k;

int check1(int i,int mid)
{
    int l=0,r=m;
    int pos=0;
    int tm=0;
    while(l<=r)
    {

        tm=(l+r)>>1;
        if(a[i]*b[tm]>=mid) pos=tm,l=tm+1;
        else r=tm-1;
    }
    return pos;
}

int check2(int i,int mid)
{
    int l=0,r=m;
    int pos=0;
    int tm=0;
    while(l<=r)
    {
        //cout<<"l:  "<<l<<"  r:  "<<r<<endl;
        tm=(l+r)>>1;
        if(a[i]*b[tm]>=mid) pos=tm,r=tm-1;
        else l=tm+1;
    }
    //cout<<"mid:  "<<mid<<endl;
    //cout<<"pos:  "<<pos<<endl;
    //cout<<"a[i]:  "<<a[i]<<endl;
    return (m-pos);
}

int check(int mid)
{
    int ans=0;
    for(int i=1;i<=n;i++)
    {
        if(a[i]<=0) ans+=check1(i,mid);
        else ans+=check2(i,mid);
    }
    //cout<<"ans:  "<<ans<<endl;
    return ans;
}

signed main(void)
{
    int n,l,r;
    while(cin>>n>>l>>r)
    {


    int ans=0;
    for(int i=l;i<=r;i++)
    {
        int now=l;
        int re=n%i;
        ans=ans+(i)*(i-1)/2*(n/i);
        cout<<"ans1:  "<<ans<<endl;
        ans=ans+(re)*(re-1)/2;
        cout<<"ans2:  "<<ans<<endl;
        ans=ans+i*(i-1)*(n/i-1)*(n/i)/2;
        cout<<"ans3:  "<<ans<<endl;
        ans=ans+re*(i-1)*(n/i);
        cout<<"ans4:  "<<ans<<endl;
    }
    cout<<ans<<endl;
    }
    return 0;
}

但这样肯定会超时,所以可以将上式子分块求和,其中需要一个操作,就是将n%i写成n-n/i*i。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<cstdlib>
#include<map>
#include<set>
#define ll long long
#define llu unsigned ll
#define ld long double
#define pr make_pair
#define pb push_back
#define x first
#define y second
#define int ll
using namespace std;
const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const int mod=998244353;
int n,nl,nr;
int inv2;

ll mypow(ll a,ll b)
{
    ll ans=1;
    while(b)
    {
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}

signed main(void)
{
    int t;
    scanf("%lld",&t);
    inv2=mypow(2,mod-2);
    while(t--)
    {
        scanf("%lld%lld%lld",&n,&nl,&nr);
        //n%=mod;
        int ans=(n*n%mod-n+mod)%mod*(nr-nl+1)%mod;
        ans%=mod;
        for(int l=nl,r;l<=nr;l=r+1)
        {
            r=min(n/(n/l),nr);
            int now=n/l;
            ans=(ans+(now*now%mod+now)*(r-l+1)%mod*(r+l)%mod*inv2%mod)%mod;
            ans=(ans-2*n*now%mod*(r-l+1)%mod+mod)%mod;
        }
        printf("%lld\n",ans%mod*inv2%mod);
    }
    return 0;
}

发布了36 篇原创文章 · 获赞 11 · 访问量 649

猜你喜欢

转载自blog.csdn.net/weixin_43822647/article/details/103950345
今日推荐