关于数论分块的证明

证明借鉴:
1.借鉴1
2.训练指南数论公因数部分
i [ 1 , n ] i\in[1,n] 时,
n i = n n n i \lfloor\frac{n}{i}\rfloor=\lfloor\frac{n}{\lfloor\frac{n}{\lfloor\frac{n}{i}\rfloor}\rfloor}\rfloor
同时, n i \big\lfloor\frac{n}{i}\big\rfloor 的取值最多有 2 n 2\sqrt n
证明1:
n i + Δ = n i = k \lfloor\frac{n}{i+\Delta}\rfloor=\lfloor\frac{n}{i}\rfloor=k
k i + p = n , k ( i + Δ ) + p = n ki+p=n,k(i+\Delta)+p'=n
于是 p = p k Δ p'=p-k\Delta
Δ m a x \Delta_{max} 时因为 p 0 p'\ge 0 Δ p k \Delta\le \lfloor\frac{p}{k}\rfloor , Δ m a x = p k \Delta_{max}= \lfloor\frac{p}{k}\rfloor

i m a x = i + Δ m a x i'_{max}=i+\Delta_{max}
= i + p k =i+\lfloor\frac{p}{k}\rfloor
= i + n n i i n i =i+\lfloor\frac{n-\lfloor\frac{n}{i}\rfloor*i}{\lfloor\frac{n}{i}\rfloor}\rfloor
= i + n n i i n i =\lfloor i+\frac{n-\lfloor\frac{n}{i}\rfloor*i}{\lfloor\frac{n}{i}\rfloor}\rfloor
= n i i + n n i i n i =\lfloor \frac{\lfloor\frac{n}{i}\rfloor*i+n-\lfloor\frac{n}{i}\rfloor*i}{\lfloor\frac{n}{i}\rfloor}\rfloor
= n n i =\lfloor \frac{n}{\lfloor\frac{n}{i}\rfloor}\rfloor
证明2:
类似于一些有关因数和分块的证明,
关于 n i \lfloor\frac{n}{i}\rfloor 的取值,我们可以这样分类

  • 1 i n 1\le i\le \sqrt n 时,由于 i i 最多时只有 n \sqrt n 个,于是 n i \lfloor\frac{n}{i}\rfloor 最多有 n \sqrt n
  • n < i n \sqrt n< i\le n 时,此时 1 n i < n 1\le \lfloor\frac{n}{i}\rfloor< \sqrt n 于是最多有 n 1 \sqrt n-1
    于是最多有 2 n 1 2\sqrt n -1 个取值,当然一般认为有 2 n 2\sqrt n

猜你喜欢

转载自blog.csdn.net/qq_37555704/article/details/102751839