样本平均的期望和方差的无偏性证明

样本均值和方差:

  首先对于样本$x_1...x_n$,他们的均值为与方差分别为:

  $\bar{x} = \frac{1}{n}\sum\limits_{i=1}^{n}x_i$

  $s^2 = \frac{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$

样本均值的方差:

  $D(\bar{x}) = D(\frac{\sum\limits_{i=1}^{n}x_i}{n}) = \frac{1}{n^2}\sum\limits_{i=1}^{n}D(x_i) = \frac{1}{n^2}\sum\limits_{i=1}^{n}\sigma^2 = \frac{\sigma^2}{n}$

样本均值和样本方差的无偏性证明:

  $E(\bar{x}) = E(\frac{1}{n}\sum\limits_{i=1}^{n}x_i) = \frac{1}{n}\sum\limits_{i=1}^{n}E(x_i) = \frac{1}{n}\sum\limits_{i=1}^{n}\mu = \mu$

  $E(s^2)$

  $= E(\frac{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}{n-1})$

  $= \frac{1}{n-1}\sum\limits_{i=1}^{n}E(x_i^2 + \bar{x}^2 - 2x_i\bar{x}) $

  $\xlongequal[]{D(x) = E(x^2) - E(x)^2} \frac{1}{n-1}\sum\limits_{i=1}^{n}[D(x) + E(x)^2 + D(\bar{x}) + E(\bar{x})^2 - 2E((x_i^2 + x_ix_1 + ... + x_ix_{i-1} + x_ix_{i+1} + ... + x_ix_n)/n)]$

  $\xlongequal[]{E(x_ix_j) = E(x_i)E(x_j)} \frac{1}{n-1}\sum\limits_{i=1}^{n}[\sigma^2 + \mu^2 + \sigma^2/n + \mu^2 - 2(\sigma^2 + \mu^2 + (n-1)\mu^2)/n]$

  $=  \frac{1}{n-1}\sum\limits_{i=1}^{n}(\frac{n - 1}{n}\sigma^2)$

  $= \sigma^2$

样本方差的方差:

  如果总体$X \sim N(\mu, \sigma^2)$,由于$\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n - 1)$,那么总体X的样本方差的方差$D(s^2) ~ \chi^2()$

  对于自由度

猜你喜欢

转载自www.cnblogs.com/qizhou/p/12187970.html
今日推荐