样本方差是总体方差的无偏估计

总体均值 μ = 1 N x i \mu = \frac{1}{N}\sum x_i , 总体方差 σ 2 = 1 N i ( x i μ ) 2 \sigma^2 = \frac{1}{N}\sum_i (x_i - \mu)^2

样本均值 x ˉ = 1 n x i \bar{x} = \frac{1}{n}\sum x_i , 样本方差 S 2 = 1 n 1 i ( x i x ˉ ) 2 S^2 = \frac{1}{n-1}\sum_i (x_i - \bar{x})^2


证明:
E ( S 2 ) = E ( 1 n 1 i = 1 n ( x i x ˉ ) 2 ) = 1 n 1 E ( i = 1 n ( x i x ˉ ) 2 ) = 1 n 1 E ( i = 1 n ( x i 2 2 x i x ˉ + x ˉ 2 ) ) = 1 n 1 E ( i = 1 n x i 2 n x ˉ 2 ) = 1 n 1 ( i = 1 n E ( x i 2 ) n E ( x ˉ 2 ) ) = 1 n 1 ( i = 1 n E ( x i 2 ) n E ( x ˉ 2 ) ) \begin{array}{ll} E(S^2) &= E\left(\frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2 \right) \\\\ &=\frac{1}{n-1} E\left(\sum_{i=1}^n (x_i - \bar{x})^2 \right) \\\\ &= \frac{1}{n-1} E\left(\sum_{i=1}^n (x_i^2 - 2x_i\bar{x} + \bar{x}^2) \right) \\\\ &= \frac{1}{n-1} E\left(\sum_{i=1}^n x_i^2 - n\bar{x}^2 \right) \\\\ &= \frac{1}{n-1} \left(\sum_{i=1}^n E(x_i^2) - nE(\bar{x}^2) \right) \\\\ &= \frac{1}{n-1} \left(\sum_{i=1}^n E(x_i^2) - nE(\bar{x}^2) \right) \\\\ \end{array}


E ( x i 2 ) = D ( x i ) + E ( x i ) 2 = σ 2 + μ 2 E(x_i^2) = D(x_i) + E(x_i)^2 = \sigma^2 + \mu^2\\ E ( x ˉ 2 ) = D ( x ˉ ) + E ( x ˉ ) 2 = σ 2 n + μ 2 E(\bar{x}^2) = D(\bar{x}) + E(\bar{x})^2 = \frac{\sigma^2}{n} + \mu^2\\

所以
E ( S 2 ) = 1 n 1 ( i = 1 n E ( x i 2 ) n E ( x ˉ 2 ) ) = 1 n 1 ( n ( σ 2 + μ 2 ) n ( σ 2 n + μ 2 ) ) = σ 2 \begin{array}{ll} E(S^2) &= \frac{1}{n-1} \left(\sum_{i=1}^n E(x_i^2) - nE(\bar{x}^2) \right) \\\\ &= \frac{1}{n-1} \left(n (\sigma^2 + \mu^2) - n(\frac{\sigma^2}{n} + \mu^2) \right) \\\\ &=\sigma^2 \end{array}
证毕。

猜你喜欢

转载自blog.csdn.net/itnerd/article/details/107700128