数据结构与算法| 复杂度分析

是什么:

  数据结构指的是“一组数据的存储结构”,算法指的是“操作数据的一组方法”。
  数据结构是为算法服务的,算法是要作用在特定的数据结构上的。

为什么要用:

  使用合适的数据结构和算法。选用合适的数据结构和算法,特别是在处理体量非常庞大的数据的时候,可以极大提高计算效率。

20 个最常用的、最基础数据结构与算法:

  10 个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树;

  10 个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法。

在学习数据结构和算法的过程中,学习它的“来历”“自身的特点”“适合解决的问题”以及“实际的应用场景”,辩证地思考,多问为什么。

效率和资源消耗的度量衡---复杂度分析。

如何分析、统计算法的执行效率和资源消耗?

  数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更省存储空间。所以,执行效率是算法一个非常重要的考量指标。

使用时间、空间复杂度分析来衡量你编写的算法代码的执行效率。

 学习数据结构和算法的基石,就是要学会`复杂度分析`。知道怎么去分析复杂度,才能作出正确的判断,在特定的场景下选用合适的正确的算法。

 通过统计、监控,就能得到算法执行的时间和占用的内存大小--(这种叫事后统计法,它有很大局限性),为什么要用复杂度分析法呢?

①. 测试结果非常依赖测试环境; ②. 测试结果受数据规模的影响很大; 而时间、空间复杂度分析法不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法

大 O 复杂度表示法

求 1,2,3…n 的累加和。估算下这段代码的执行时间:
    int cal(int n) {
        int sum = 0;
        int i = 1;
        for (; i <= n; ++i) {
            sum = sum + i;
        }
        return sum;
    }
从 CPU 的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据。尽管每行代码对应的 CPU 执行的个数、执行的时间都不一样,但是,我们这里只是粗略估计,
所以可以假设每行代码执行的时间都一样,为 unit_time。在这个假设的基础之上, 第
2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要 2n*unit_time 的执行时间,
所以这段代码总的执行时间就是 (2n+2)*unit_time。可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比。
 1 int cal(int n) {
 2     int sum = 0;
 3     int i = 1;
 4     int j = 1;
 5     for (; i <= n; ++i) {
 6         j = 1;
 7         for (; j <= n; ++j) {
 8             sum = sum + i * j;
 9         }
10     }
11 }

第 2、3、4 行代码,每行都需要 1 个 unit_time 的执行时间,第 5、6 行代码循环执行了 n 遍,需要 2n * unit_time 的执行时间,
第 7、8 行代码循环执行了 n2遍,所以需要 2n2 * unit_time 的执行时间。
所以,整段代码总的执行时间 T(n) = (2n2+2n+3)*unit_time。 尽管我们不知道 unit_time 的具体值,但是通过这两段代码执行时间的推导过程,我们可以得到一个非常重要的规律,那就是,
所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比。

我们可以把这个规律总结成一个公式:

其中,T(n) 我们已经讲过了,它表示代码执行的时间;
n 表示数据规模的大小;
f(n) 表示每行代码执行的次数总和。
因为这是一个公式,所以用 f(n) 来表示。公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。 所以,第一个例子中的 T(n)
= O(2n+2),
第二个例子中的 T(n) = O(2n2+2n+3)。
这就是大 O 时间复杂度表示法。大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。 当 n 很大时,你可以把它想象成
10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,
如果用大 O 表示法表示刚讲的那两段代码的时间复杂度,
就可以记为:T(n) = O(n); T(n) = O(n2)。

时间复杂度分析

1. 只关注循环执行次数最多的一段代码

我刚才说了,大 O 这种复杂度表示方法只是表示一种变化趋势。我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了。这段核心代码执行次数的 n 的量级,就是整段要分析代码的时间复杂度。

2. 加法法则:总复杂度等于量级最大的那段代码的复杂度

3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

我刚讲了一个复杂度分析中的加法法则,这儿还有一个乘法法则。类比一下,你应该能“猜到”公式是什么样子的吧?

如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n)).

也就是说,假设 T1(n) = O(n),T2(n) = O(n2),则 T1(n) * T2(n) = O(n3)。落实到具体的代码上,我们可以把乘法法则看成是嵌套循环

几种常见时间复杂度实例分析

   

可以粗略地分为两类,多项式量级非多项式量级。其中,非多项式量级只有两个:O(2n) 和 O(n!)。

我们把时间复杂度为非多项式量级的算法问题叫作 NP(Non-Deterministic Polynomial,非确定多项式)问题。

当数据规模 n 越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。因此,关于 NP 时间复杂度我就不展开讲了。我们主要来看几种常见的多项式时间复杂度

1. O(1)

首先你必须明确一个概念,O(1) 只是常量级时间复杂度的一种表示方法。

只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)

2. O(logn)、O(nlogn)

对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。

1     i=1;
2     while (i <= n) {
3     i = i * 2;
4 }

 通过 2x=n 求解 x , x=log2n,所以,这段代码的时间复杂度就是 O(log2n)

不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)。

对数之间是可以互相转换的,log3n 就等于 log32 * log2n,所以 O(log3n) = O(C * log2n),其中 C=log32 是一个常量。基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以,O(log2n) 就等于 O(log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。

O(nlogn) 就很容易理解了。还记得我们刚讲的乘法法则吗?如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。

3. O(m+n)、O(m*n)

我们再来讲一种跟前面都不一样的时间复杂度,代码的复杂度由两个数据的规模来决定

m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。

针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。

空间复杂度分析

时间复杂度的全称是渐进时间复杂度表示算法的执行时间与数据规模之间的增长关系。类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系

我们常见的空间复杂度就是 O(1)、O(n)、O(n2 ),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。

        

猜你喜欢

转载自www.cnblogs.com/shengyang17/p/11712061.html