二次剩余系解法

(Note: All \equiv are taken to mean \pmod p, unless indicated otherwise).[edit]The algorithm

Inputsp, an odd prime. n, an integer which is a quadratic residue (mod p), meaning that the Legendre symbol \bigl(\tfrac{n}{p}\bigr)=1.

OutputsR, an integer satisfying R^2 \equiv n.

  1. Factor out powers of 2 from p − 1, defining Q and S as: p-1 = Q2^S with Q odd. Note that if S = 1i.e. p \equiv 3 \pmod 4, then solutions are given directly by R \equiv \pm n^{\frac{p+1}{4}}.
  2. Select a z such that the Legendre symbol \bigl(\tfrac{z}{p}\bigr)=-1 (that is, z should be a quadratic non-residue modulo p), and set c \equiv z^Q.
  3. Let R \equiv n^{\frac{Q+1}{2}}, t\equiv n^Q, M = S.
  4. Loop:
    1. If t \equiv 1, return R.
    2. Otherwise, find the lowest i0 < i < M, such that t^{2^i} \equiv 1e.g. via repeated squaring.
    3. Let b \equiv c^{2^{M-i-1}}, and set R \equiv Rb, \; t \equiv tb^2, c \equiv b^2 and M =\; i.

Once you have solved the congruence with R the second solution is p − R.

Example

Solving the congruence  x^2 \equiv 10 \pmod {13} . It is clear that 13 is odd, and since 10^{\frac{13-1}{2}} = 10^6 \equiv 1 \pmod {13}, 10 is a quadratic residue (by Euler's criterion).

  • Step 1: Observe p-1 = 12 =  3 \cdot 2^2  so Q=3S=2.
  • Step 2: Take z=2 as the quadratic nonresidue (2 is a quadratic nonresidue since 2^{\frac{13-1}{2}} = -1 \pmod {13} (again, Euler's criterion)). Set  c = 2^3 \equiv 8 \pmod {13}.
  • Step 3: R=10^2 \equiv -4, \; t\equiv 10^3 \equiv -1 \pmod {13}, M = 2.
  • Step 4: Now we start the loop:  t \not\equiv 1 \pmod {13} so 0 < i <\; 2i.e. i = \;1.
    • Let  b \equiv 8^{2^{2-1-1}} \equiv 8 \pmod {13}, so b^2 \equiv 8^2 \equiv -1 \pmod {13}.
    • Set R=-4\cdot8 \equiv 7 \pmod {13} . Set t \equiv -1 \cdot -1 \equiv 1 \pmod {13}, and M =\;1.
    • We restart the loop, and since t \equiv 1 \pmod{13} we are done, returning R\equiv7 \pmod {13}.

Indeed, observe that 7^2 = 49 \equiv 10 \pmod {13}  and naturally also (-7)^2 \equiv 6^2 \equiv 10 \pmod {13} . So the algorithm yields two solutions to our congruence.

Proof

First write p-1=Q2^S. Now write r \equiv n^{\frac{Q+1}{2}}\pmod p and t \equiv n^Q \pmod p, observing that r^2 \equiv nt \pmod p. This latter congruence will be true after every iteration of the algorithm's main loop. If at any point, t \equiv 1 \pmod p  then r^2 \equiv n \pmod p  and the algorithm terminates with R \equiv \pm r \pmod p.

If t \not\equiv 1 \pmod p , then consider z, a quadratic non-residue of p. Let c \equiv z^Q \pmod p. Then c^{2^S} \equiv (z^Q)^{2^S} \equiv z^{2^SQ}\equiv z^{p-1} \equiv 1 \pmod p and  c^{2^{S-1}} \equiv z^\frac{p-1}{2}\equiv -1 \pmod p, which shows that the order of c is 2^S.

Similarly we have t^{2^S} \equiv 1 \pmod p, so the order of t divides 2^S. Suppose the order of t is 2^{S'}. Since n is a square modulo pt \equiv n^Q \pmod p is also a square, and hence S'\leq S-1 .

Now we set  b \equiv c^{2^{S-S'-1}} \pmod p and with this r' \equiv br \pmod pc' \equiv b^2 \pmod p and  t' \equiv c't \pmod p. As before, r'^2 \equiv nt' \pmod pholds; however with this construction both t and  c' have order 2^{S'}. This implies that t' has order 2^{S''} with  S'' < S' .

If S'' \equiv 0 \pmod p then t' \equiv 1 \pmod p, and the algorithm stops, returning R \equiv \pm r' \pmod p. Else, we restart the loop with analogous definitions of b'r''c''and t'' until we arrive at an S^{(j)'} that equals 0. Since the sequence of S is strictly decreasing the algorithm terminates.

猜你喜欢

转载自www.cnblogs.com/wuliking/p/11366827.html