数据--第35课 - 创建二叉树

第35课 - 创建二叉树

1. 指路法定位结点

从根节点开始。。。

结点1的位置:{NUll}

结点2的位置:{左}

结点3的位置:{右}

结点4的位置:{左,左}

结点5的位置:{左,右}

结点6的位置:{右,左}

结点7的位置:{右,右}

结点8的位置:{左,左,左}

结点9的位置:{左,左,右}

结点10的位置:{左,右,左}

指路法通过根结点与目标结点的相对位置进行定位。

指路法可以避开二叉树递归的性质“线性”定位。

思想:在C语言中可以利用bit位进行指路。

#define BT_LEFT 0

#define BT_RIGHT 1

typedef unsigned long long BTP0s;

2. 二叉树存储结构

用结构体来定义二叉树中的指针域。

二叉树的头结点也可以用结构体实现。

3. 二叉树的操作

(1)定位

while((count > 0)&&(current != NULL))

{

         bit = pos &1;

         pos = pos >>1;

         count--;

         parent = current;

         if( bit == BT_LEFT)

         {

                  current = current->left;  

         }

         else if( bit == BT_RIGHT)

         {

                  current = current->right;

         }

}

技巧:利用二进制中的0和1分别代表left和right。

      位运算是实现指路法的基础。

4. 程序

main.c

#include <stdio.h>

#include <stdlib.h>

#include "BTree.h"

/* run this program using the console pauser or add your own getch, system("pause") or input loop */

struct Node

{

    BTreeNode header;

    char v;

};

void printf_data(BTreeNode* node)

{

    if( node != NULL )

    {

        printf("%c", ((struct Node*)node)->v);

    }

}

int main(int argc, char *argv[])

{

    BTree* tree = BTree_Create();

   

    struct Node n1 = {{NULL, NULL}, 'A'};

    struct Node n2 = {{NULL, NULL}, 'B'};

    struct Node n3 = {{NULL, NULL}, 'C'};

    struct Node n4 = {{NULL, NULL}, 'D'};

    struct Node n5 = {{NULL, NULL}, 'E'};

    struct Node n6 = {{NULL, NULL}, 'F'};

   

    BTree_Insert(tree, (BTreeNode*)&n1, 0, 0, 0);

    BTree_Insert(tree, (BTreeNode*)&n2, 0x00, 1, 0);

    BTree_Insert(tree, (BTreeNode*)&n3, 0x01, 1, 0);

    BTree_Insert(tree, (BTreeNode*)&n4, 0x00, 2, 0);

    BTree_Insert(tree, (BTreeNode*)&n5, 0x02, 2, 0);

    BTree_Insert(tree, (BTreeNode*)&n6, 0x02, 3, 0);

   

    printf("Height: %d\n", BTree_Height(tree));

    printf("Degree: %d\n", BTree_Degree(tree));

    printf("Count: %d\n", BTree_Count(tree));

    printf("Position At (0x02, 2): %c\n", ((struct Node*)BTree_Get(tree, 0x02, 2))->v);

    printf("Full Tree: \n");

   

    BTree_Display(tree, printf_data, 4, '-');

   

    BTree_Delete(tree, 0x00, 1);

   

    printf("After Delete B: \n");

    printf("Height: %d\n", BTree_Height(tree));

    printf("Degree: %d\n", BTree_Degree(tree));

    printf("Count: %d\n", BTree_Count(tree));

    printf("Full Tree: \n");

   

    BTree_Display(tree, printf_data, 4, '-');

   

    BTree_Clear(tree);

   

    printf("After Clear: \n");

    printf("Height: %d\n", BTree_Height(tree));

    printf("Degree: %d\n", BTree_Degree(tree));

    printf("Count: %d\n", BTree_Count(tree));

   

    BTree_Display(tree, printf_data, 4, '-');

   

    BTree_Destroy(tree);

   

       return 0;

}

 

BTree.h

#ifndef _BTREE_H_

#define _BTREE_H_

#define BT_LEFT 0

#define BT_RIGHT 1

typedef void BTree;

typedef unsigned long long BTPos;

typedef struct _tag_BTreeNode BTreeNode;

struct _tag_BTreeNode

{

    BTreeNode* left;

    BTreeNode* right;

};

typedef void (BTree_Printf)(BTreeNode*);

BTree* BTree_Create();

void BTree_Destroy(BTree* tree);

void BTree_Clear(BTree* tree);

int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag);

BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count);

BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count);

BTreeNode* BTree_Root(BTree* tree);

int BTree_Height(BTree* tree);

int BTree_Count(BTree* tree);

int BTree_Degree(BTree* tree);

void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div);

#endif

 

BTree.c

#include <stdio.h>

#include <malloc.h>

#include "BTree.h"

typedef struct _tag_BTree TBTree;

struct _tag_BTree

{

    int count;

    BTreeNode* root;

};

static void recursive_display(BTreeNode* node, BTree_Printf* pFunc, int format, int gap, char div) // O(n)

{

    int i = 0;

   

    if( (node != NULL) && (pFunc != NULL) )

    {

        for(i=0; i<format; i++)

        {

            printf("%c", div);

        }

       

        pFunc(node);

       

        printf("\n");

       

        if( (node->left != NULL) || (node->right != NULL) )

        {

            recursive_display(node->left, pFunc, format + gap, gap, div);

            recursive_display(node->right, pFunc, format + gap, gap, div);

        }

    }

    else

    {

        for(i=0; i<format; i++)

        {

            printf("%c", div);

        }

        printf("\n");

    }

}

static int recursive_count(BTreeNode* root) // O(n)

{

    int ret = 0;

   

    if( root != NULL )

    {

        ret = recursive_count(root->left) + 1 + recursive_count(root->right);

    }

   

    return ret;

}

static int recursive_height(BTreeNode* root) // O(n)

{

    int ret = 0;

   

    if( root != NULL )

    {

        int lh = recursive_height(root->left);

        int rh = recursive_height(root->right);

        

        ret = ((lh > rh) ? lh : rh) + 1;

    }

   

    return ret;

}

static int recursive_degree(BTreeNode* root) // O(n)

{

    int ret = 0;

   

    if( root != NULL )

    {

        if( root->left != NULL )

        {

            ret++;

        }

       

        if( root->right != NULL )

        {

            ret++;

        }

       

        if( ret == 1 )

        {

            int ld = recursive_degree(root->left);

            int rd = recursive_degree(root->right);

           

            if( ret < ld )

            {

                ret = ld;

            }

           

            if( ret < rd )

            {

                ret = rd;

            }

        }

    }

   

    return ret;

}

BTree* BTree_Create() // O(1)

{

    TBTree* ret = (TBTree*)malloc(sizeof(TBTree));

   

    if( ret != NULL )

    {

        ret->count = 0;

        ret->root = NULL;

    }

   

    return ret;

}

void BTree_Destroy(BTree* tree) // O(1)

{

    free(tree);

}

void BTree_Clear(BTree* tree) // O(1)

{

    TBTree* btree = (TBTree*)tree;

   

    if( btree != NULL )

    {

        btree->count = 0;

        btree->root = NULL;

    }

}

int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag) // O(n)

{

    TBTree* btree = (TBTree*)tree;

    int ret = (btree != NULL) && (node != NULL) && ((flag == BT_LEFT) || (flag == BT_RIGHT));

    int bit = 0;

   

    if( ret )

    {

        BTreeNode* parent = NULL;

        BTreeNode* current = btree->root;

       

        node->left = NULL;

        node->right = NULL;

       

        while( (count > 0) && (current != NULL) )

        {

            bit = pos & 1;

            pos = pos >> 1;

           

            parent = current;

           

            if( bit == BT_LEFT )

            {

                current = current->left;

            }

            else if( bit == BT_RIGHT )

            {

                current = current->right;

            }

           

            count--;

        }

       

        if( flag == BT_LEFT )

        {

            node->left = current;

        }

        else if( flag == BT_RIGHT )

        {

            node->right = current;

        }

       

        if( parent != NULL )

        {

            if( bit == BT_LEFT )

            {

                parent->left = node;

            }

            else if( bit == BT_RIGHT )

            {

                parent->right = node;

            }

        }

        else

        {

            btree->root = node;

        }

       

        btree->count++;

    }

   

    return ret;

}

BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count) // O(n)

{

    TBTree* btree = (TBTree*)tree;

    BTreeNode* ret = NULL;

    int bit = 0;

   

    if( btree != NULL )

    {

        BTreeNode* parent = NULL;

        BTreeNode* current = btree->root;

        

        while( (count > 0) && (current != NULL) )

        {

            bit = pos & 1;

            pos = pos >> 1;

           

            parent = current;

           

            if( bit == BT_LEFT )

            {

                current = current->left;

            }

            else if( bit == BT_RIGHT )

            {

                current = current->right;

            }

           

            count--;

        }

       

        if( parent != NULL )

        {

            if( bit == BT_LEFT )

            {

                parent->left = NULL;

            }

            else if( bit == BT_RIGHT )

            {

                parent->right = NULL;

            }

        }

        else

        {

            btree->root = NULL;

        }

       

        ret = current;

       

        btree->count = btree->count - recursive_count(ret);

    }

   

    return ret;

}

BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count) // O(n)

{

    TBTree* btree = (TBTree*)tree;

    BTreeNode* ret = NULL;

    int bit = 0;

   

    if( btree != NULL )

    {

        BTreeNode* current = btree->root;

       

        while( (count > 0) && (current != NULL) )

        {

            bit = pos & 1;

            pos = pos >> 1;

           

            if( bit == BT_LEFT )

            {

                current = current->left;

            }

            else if( bit == BT_RIGHT )

            {

                current = current->right;

            }

           

            count--;

        }

       

        ret = current;

    }

   

    return ret;

}

BTreeNode* BTree_Root(BTree* tree) // O(1)

{

    TBTree* btree = (TBTree*)tree;

    BTreeNode* ret = NULL;

   

    if( btree != NULL )

    {

        ret = btree->root;

    }

   

    return ret;

}

int BTree_Height(BTree* tree) // O(n)

{

    TBTree* btree = (TBTree*)tree;

    int ret = 0;

   

    if( btree != NULL )

    {

        ret = recursive_height(btree->root);

    }

   

    return ret;

}

int BTree_Count(BTree* tree) // O(1)

{

    TBTree* btree = (TBTree*)tree;

    int ret = 0;

   

    if( btree != NULL )

    {

        ret = btree->count;

    }

   

    return ret;

}

int BTree_Degree(BTree* tree) // O(n)

{

    TBTree* btree = (TBTree*)tree;

    int ret = 0;

   

    if( btree != NULL )

    {

        ret = recursive_degree(btree->root);

    }

   

    return ret;

}

void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div) // O(n)

{

    TBTree* btree = (TBTree*)tree;

   

    if( btree != NULL )

    {

        recursive_display(btree->root, pFunc, 0, gap, div);

    }

}

小结:

二叉树在结构上不依赖组织链表。

通过指路法可以方便的定位二叉树中的结点。

基于指路法的二叉树在插入、删除和获取操作的实现细节上与单链表相似。

单链表就是特殊的额二叉树,实现上当然相似,只是更简单而已。

猜你喜欢

转载自www.cnblogs.com/free-1122/p/11336047.html