体育赛事中的概率计算问题

前言

典例剖析

例1 【2019年高考数学试卷理科新课标Ⅱ第18题】

例3 甲乙两人轮流投篮,每人每次投篮一次,先投中者获胜。投篮进行到有人获胜或每人都已经投球3次时结束。设甲每次投篮命中的概率为\(\cfrac{2}{5}\),乙每次投篮命中的概率为\(\cfrac{2}{3}\),且各次投篮互不影响,现由甲先投。

⑴求甲获胜的概率;

⑵求投篮结束时甲的投篮次数\(X\)的分布列和数学期望。

分析:⑴

Y Y Y Y Y Y
N N N N N N

由表格可以看出,甲获胜有这些事件:

\(A_1:\)一次投中;\(A_2:\)前两次甲乙都未投中,第三次甲投中;

\(A_3:\)前四次甲乙都未投中,第五次甲投中;

这些事件彼此互斥,甲获胜的事件为\(A_1+A_2+A_3\)

\(P(A_1)=\cfrac{2}{5}\)\(P(A_2)=\cfrac{3}{5}\times \cfrac{1}{3}\times\cfrac{2}{5}=\cfrac{2}{25}\)

\(P(A_3)=\cfrac{3}{5}\times \cfrac{1}{3}\times\cfrac{3}{5}\times \cfrac{1}{3}\times\cfrac{2}{5}=\cfrac{2}{125}\)

所以\(P(A_1+A_2+A_3)=\cfrac{2}{5}+\cfrac{2}{25}+\cfrac{2}{125}=\cfrac{62}{125}\)

\(X\)的所有可能取值为\(1,2,3\).

\(X=1\)包含甲投篮一次命中和甲第一次未命中而乙命中,\(P(X=1)=\cfrac{2}{5}+\cfrac{3}{5}\times\cfrac{2}{3}=\cfrac{4}{5}\)

\(X=2\)包含前两次甲乙未命中而第三次甲投中和前三次甲乙未命中而第四次乙命中,\(P(X=2)=\cfrac{3}{5}\times\cfrac{1}{3}\times\cfrac{2}{5}+\cfrac{3}{5}\times\cfrac{1}{3}\times\cfrac{3}{5}\times\cfrac{2}{3}=\cfrac{4}{25}\)

\(X=3\)包含前四次甲乙未命中而第五次甲投中和前五次甲乙未命中而第六次乙命中和六次投篮两人都未投中导致结束,

\(P(X=3)=\cfrac{3}{5}\times\cfrac{1}{3}\times\cfrac{3}{5}\times\cfrac{1}{3}\times\cfrac{2}{5}\)

\(+\cfrac{3}{5}\times\cfrac{1}{3}\times\cfrac{3}{5}\times\cfrac{1}{3}\times\cfrac{3}{5}\times\cfrac{2}{3}\)

\(+\cfrac{3}{5}\times\cfrac{1}{3}\times\cfrac{3}{5}\times\cfrac{1}{3}\times\cfrac{3}{5}\times\cfrac{1}{3}\)

\(=\cfrac{1}{25}\)

分布列略;故数学期望为\(E(X)=1\times\cfrac{4}{5}+2\times\cfrac{4}{25}+3\times\cfrac{1}{25}=\cfrac{31}{25}\).

猜你喜欢

转载自www.cnblogs.com/wanghai0666/p/11050535.html