Tensorflow 学习(4)实现CIFAR_10小数据集分类(3)

1.数据集

CIFAR_10

192.168.9.5:/DATACENTER1/zhiwen.wang/tensorflow-wzw/tensorflow_learn/CIFAR_10/cifar-10-batches


2.代码

192.168.9.5:/DATACENTER1/zhiwen.wang/tensorflow-wzw/tensorflow_learn/CIFAR_10/cifar10

wzwtrain13.py

# -*- coding: utf-8 -*-

"""

Created on 2019

@author: wzw

"""

'''

建立一个带有全局平均池化层的卷积神经网络  并对CIFAR-10数据集进行分类

1.使用3个卷积层的同卷积操作,滤波器大小为5x5,每个卷积层后面都会跟一个步长为2x2的池化层,滤波器大小为2x2

2.对输出的10个feature map进行全局平均池化,得到10个特征

3.对得到的10个特征进行softmax计算,得到分类

'''

import cifar10_input

import tensorflow as tf

import numpy as np

'''

一 引入数据集

'''

batch_size = 256

learning_rate = 1e-4

training_step = 100000

display_step = 200

#数据集目录

data_dir = './cifar-10-batches/cifar-10-batches-bin'

print('begin')

#获取训练集数据

images_train,labels_train = cifar10_input.inputs(eval_data=False,data_dir = data_dir,batch_size=batch_size)

print('begin data')

'''

二 定义网络结构

'''

def weight_variable(shape):

    '''

    初始化权重


    args:

        shape:权重shape

    '''

    initial = tf.truncated_normal(shape=shape,mean=0.0,stddev=0.1)

    return tf.Variable(initial)

def bias_variable(shape):

    '''

    初始化偏置


    args:

        shape:偏置shape

    '''

    initial =tf.constant(0.1,shape=shape)

    return tf.Variable(initial)

def conv2d(x,W):

    '''

    卷积运算 ,使用SAME填充方式  池化层后

        out_height = in_hight / strides_height(向上取整)

        out_width = in_width / strides_width(向上取整)


    args:

        x:输入图像 形状为[batch,in_height,in_width,in_channels]

        W:权重 形状为[filter_height,filter_width,in_channels,out_channels]       

    '''

    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

def max_pool_2x2(x):

    '''

    最大池化层,滤波器大小为2x2,'SAME'填充方式  池化层后

        out_height = in_hight / strides_height(向上取整)

        out_width = in_width / strides_width(向上取整)


    args:

        x:输入图像 形状为[batch,in_height,in_width,in_channels]

    '''

    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')


def avg_pool_6x6(x):

    '''

    全局平均池化层,使用一个与原有输入同样尺寸的filter进行池化,'SAME'填充方式  池化层后

        out_height = in_hight / strides_height(向上取整)

        out_width = in_width / strides_width(向上取整)


    args;

        x:输入图像 形状为[batch,in_height,in_width,in_channels]

    '''

    return tf.nn.avg_pool(x,ksize=[1,6,6,1],strides=[1,6,6,1],padding='SAME')

def print_op_shape(t):

    '''

    输出一个操作op节点的形状

    '''

    print(t.op.name,'',t.get_shape().as_list())

#定义占位符

input_x = tf.placeholder(dtype=tf.float32,shape=[None,24,24,3])  #图像大小24x24x

input_y = tf.placeholder(dtype=tf.float32,shape=[None,10])        #0-9类别

x_image = tf.reshape(input_x,[-1,24,24,3])

#1.卷积层 ->池化层

W_conv1 = weight_variable([5,5,3,64])

b_conv1 = bias_variable([64])

h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1)    #输出为[-1,24,24,64]

print_op_shape(h_conv1)

h_pool1 = max_pool_2x2(h_conv1)                            #输出为[-1,12,12,64]

print_op_shape(h_pool1)

#2.卷积层 ->池化层

W_conv2 = weight_variable([5,5,64,64])

b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)    #输出为[-1,12,12,64]

print_op_shape(h_conv2)

h_pool2 = max_pool_2x2(h_conv2)                            #输出为[-1,6,6,64]

print_op_shape(h_pool2)

#3.卷积层 ->全局平均池化层

W_conv3 = weight_variable([5,5,64,10])

b_conv3 = bias_variable([10])

h_conv3 = tf.nn.relu(conv2d(h_pool2,W_conv3) + b_conv3)  #输出为[-1,6,6,10]

print_op_shape(h_conv3)

nt_hpool3 = avg_pool_6x6(h_conv3)                        #输出为[-1,1,1,10]

print_op_shape(nt_hpool3)

nt_hpool3_flat = tf.reshape(nt_hpool3,[-1,10])           

y_conv = tf.nn.softmax(nt_hpool3_flat)

'''

三 定义求解器

'''

#softmax交叉熵代价函数

cost = tf.reduce_mean(-tf.reduce_sum(input_y * tf.log(y_conv),axis=1))

#求解器

train = tf.train.AdamOptimizer(learning_rate).minimize(cost)

#返回一个准确度的数据

correct_prediction = tf.equal(tf.arg_max(y_conv,1),tf.arg_max(input_y,1))

#准确率

accuracy = tf.reduce_mean(tf.cast(correct_prediction,dtype=tf.float32))

'''

四 开始训练

'''

sess = tf.Session();

sess.run(tf.global_variables_initializer())

tf.train.start_queue_runners(sess=sess)

for step in range(training_step):

    with tf.device('/cpu:0'):

        image_batch,label_batch = sess.run([images_train,labels_train])

        label_b = np.eye(10,dtype=np.float32)[label_batch]


    with tf.device('/gpu:0'):

        train.run(feed_dict={input_x:image_batch,input_y:label_b},session=sess)


    if step % display_step == 0:

        train_accuracy = accuracy.eval(feed_dict={input_x:image_batch,input_y:label_b},session=sess)

        print('Step {0} tranining accuracy {1}'.format(step,train_accuracy))

3.运行

CUDA_VISIBLE_DEVICES=1 python wzwtrain13.py

4.运行结果


7411425-4028256aa2de5b3e.png
图2 训练结束

转载于:https://www.jianshu.com/p/46c652099565

猜你喜欢

转载自blog.csdn.net/weixin_34419321/article/details/91252783
今日推荐