Python之Tensorflow:线性回归

源码

#>  tutorial:https://www.cnblogs.com/xianhan/p/9090426.html

# 步骤一:构建模型

# 1.TensorFlow 中的线性模型
## 占位符(Placeholder):表示执行梯度下降时将实际数据值输入到模型中的一个入口点。例如房子面积  (x) 和房价 (y_)。
x = tf.placeholder(tf.float32,[None,1]); # X占位一条 Nx1维的向量

## 变量:表示我们试图寻找的能够使成本函数降到最小的「good」值的变量,例如 W 和 b。
W = tf.Variable(tf.zeros([1,1])); # tf.zeros([1,1]):生成 第1行含1个元素的【二维】数组:[[ 0.]]
b = tf.Variable(tf.zeros([1]));   # tf.zeros([1])  : 生成 第1行含1个元素的【一维数组】:[0.]

## 然后 TensorFlow 中的线性模型 (y = W.x + b) 就是:
y = tf.matmul(x,W)+b;

# 2.TensorFlow 中的成本函数
## 与将数据点的实际房价 (y_) 输入模型类似,我们创建一个占位符。
y_ = tf.placeholder(tf.float32,[None,1])

## 成本函数的最小方差就是:
cost = tf.reduce_sum(tf.pow(y_ - y,2)); # 各项样本点的最小方差之和作为拟合的成本函数

# 3.数据
## 由于没有房价(y_) 和房子面积 (x) 的实际数据点,我们就生成它们
## 简单起见,我们将房价 (ys) 设置成永远是房子面积 (xs) 的 2 倍。
for i in range(100):
    ## create fake data for actual data
    xs = np.array([[i]]);
    ys = np.array([[2*i+20]]);
    pass;

# 4.梯度下降
## 有了线性模型、成本函数和数据,我们就可以开始执行梯度下降从而最小化代价函数,以获得 W、b 的「good」值。
learning_rate = 0.001; ## 学习率 or步长 (每次进行训练时在最陡的梯度方向上所采取的「步」长)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost); 

# 步骤二:训练模型
## 训练包含以预先确定好的次数执行梯度下降,或者是直到成本函数低于某个预先确定的临界值为止。

# 1.TensorFlow 的怪异
## 所有变量都需要在训练开始时进行初始化,否则它们可能会带有之前执行过程中的残余值。
init = tf.initialize_all_variables();

# 2.TensorFlow 会话
## 虽然 TensorFlow 是一个 Python 库,Python 是一种解释性的语言,但是默认情况下不把 TensorFlow 运算用作解释性能的原因,因此不执行上面的 init 。
## 相反 TensorFlow 是在一个会话中进行;创建一个会话 (sess) 然后使用 sess.run() 去执行。
session = tf.Session();
session.run(init)

steps = 50; # 迭代次数过高以后,会产生过拟合现象【其计算出的值可能会是严重错误的拟合值】
# 类似地我们在一个循环中调用 withinsess.run() 来执行上面的 train_step
arrayX = [];
arrayY = [];
for i in range(steps):
    # Create fake data for y = W*x + b where W=2,b=0.2
    xs = np.array([[i]]); 
    ys = np.array([[2*i+0.2]]);
#     xs = np.array([x_data[i]]); 
#     ys = np.array([y_true[i]]);
    
    arrayX.extend(xs[0]);
    arrayY.extend(ys[0]);
    
    # Train
    feed = {x:xs,y_:ys};
    session.run(train_step,feed_dict=feed); # feed them into train_step
    
    # View 
    print("After %d iteration:"%i)
    print("W:%f"%session.run(W))
    print("b:%f"%session.run(b))
    pass; 
# 可视化
print("W:\n",session.run(W));
print("b:\n",session.run(b));
arrayX = np.array(arrayX);
arrayX = arrayX.reshape((1,steps));

arrayB = np.array(np.full(steps,session.run(b)));
arrayB = arrayB.reshape(1,steps);
arrayB = np.transpose(arrayB)
# print("arrayB:\n",arrayB);
predictYs = np.dot(np.transpose(arrayX),session.run(W))+ arrayB;

# print(predictYs);
# print(arrayX)
#print(arrayY)

plt.rcParams['figure.dpi'] = 300 #分辨率
plt.scatter(arrayX, arrayY, marker = '*',color = 'red', s = 10 ,label = 'Actual Dataset')
plt.scatter(arrayX, predictYs, marker = 'o',color = 'green', s = 8 ,label = 'Fit Dataset')
plt.legend(loc = 'best')    # 设置 图例所在的位置 使用推荐位置
After 0 iteration:
W:0.000000
b:0.000400
After 1 iteration:
W:0.004399
b:0.004799
After 2 iteration:
W:0.021145
b:0.013172
After 3 iteration:
W:0.057885
b:0.025419
After 4 iteration:
W:0.121430
b:0.041305
After 5 iteration:
W:0.216945
b:0.060408
After 6 iteration:
W:0.347000
b:0.082084
After 7 iteration:
W:0.510645
b:0.105462
After 8 iteration:
W:0.702795
b:0.129480
After 9 iteration:
W:0.914212
b:0.152971
After 10 iteration:
W:1.132310
b:0.174781
After 11 iteration:
W:1.342846
b:0.193921
After 12 iteration:
W:1.532252
b:0.209704
After 13 iteration:
W:1.690099
b:0.221846
After 14 iteration:
W:1.810968
b:0.230480
After 15 iteration:
W:1.895118
b:0.236090
After 16 iteration:
W:1.947663
b:0.239374
After 17 iteration:
W:1.976575
b:0.241075
After 18 iteration:
W:1.990276
b:0.241836
After 19 iteration:
W:1.995707
b:0.242122
After 20 iteration:
W:1.997456
b:0.242209
After 21 iteration:
W:1.997927
b:0.242232
After 22 iteration:
W:1.998075
b:0.242238
After 23 iteration:
W:1.998169
b:0.242242
After 24 iteration:
W:1.998251
b:0.242246
After 25 iteration:
W:1.998325
b:0.242249
After 26 iteration:
W:1.998393
b:0.242251
After 27 iteration:
W:1.998455
b:0.242254
After 28 iteration:
W:1.998512
b:0.242256
After 29 iteration:
W:1.998564
b:0.242258
After 30 iteration:
W:1.998613
b:0.242259
After 31 iteration:
W:1.998658
b:0.242261
After 32 iteration:
W:1.998701
b:0.242262
After 33 iteration:
W:1.998741
b:0.242263
After 34 iteration:
W:1.998778
b:0.242264
After 35 iteration:
W:1.998813
b:0.242265
After 36 iteration:
W:1.998846
b:0.242266
After 37 iteration:
W:1.998878
b:0.242267
After 38 iteration:
W:1.998907
b:0.242268
After 39 iteration:
W:1.998935
b:0.242269
After 40 iteration:
W:1.998960
b:0.242269
After 41 iteration:
W:1.998989
b:0.242270
After 42 iteration:
W:1.999004
b:0.242270
After 43 iteration:
W:1.999050
b:0.242271
After 44 iteration:
W:1.999007
b:0.242270
After 45 iteration:
W:1.999222
b:0.242275
After 46 iteration:
W:1.998624
b:0.242262
After 47 iteration:
W:2.000731
b:0.242307
After 48 iteration:
W:1.993301
b:0.242152
After 49 iteration:
W:2.021338
b:0.242724

W:
 [[ 2.02133822]]
b:
 [ 0.24272442]

推荐文献

猜你喜欢

转载自www.cnblogs.com/johnnyzen/p/10856815.html