面试题10:斐波那契数列类问题

一.

题目描述

大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)n<=39

1.递归公式的解法

int Fibonacci(int n)
{
	if(n <= 1)
	{
		return n;
	} else {
		return Fibonacci(n - 1) + Fibonacci(n - 2);
	}
}

很抱歉StackOverFlow了,事实上,用递归的方法计算的时间复杂度是以n的指数的方式递增的

2.递归展开-迭代方法O(N)

class Solution {
public:
    int Fibonacci(int n) {
    if(n <= 1)
        {
            return n;
        }
        int one = 0;
        int two = 1;;
        int res = 0;

        for(int i = 2; i <= n; i++)
        {
            res = one + two;

            one = two;
            two = res;
        }

        return res;
    }
};

3.最快的方法是用矩阵的方法,时间复杂度为O(logN),但不实用

二.跳台阶问题

1.普通跳台阶问题

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)

对于本题,前提只有 一次 1阶或者2阶的跳法。

a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);

b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2)

c.由a\b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2)

d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2

e.可以发现最终得出的是一个斐波那契数列:

         1, (n=1)

f(n) = 2, (n=2)

          f(n-1)+f(n-2) ,(n>2,n为整数)

public class Solution {
    public int JumpFloor(int target) {
        if (target <= 0) {
            return -1;
        } else if (target == 1) {
            return 1;
        } else if (target ==2) {
            return 2;
        } else {
            return  JumpFloor(target-1)+JumpFloor(target-2);
        }
    }
}

2.变态跳台阶问题

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:

f(1) = 1

f(2) = f(2-1) + f(2-2) //f(2-2) 表示2阶一次跳2阶的次数。

f(3) = f(3-1) + f(3-2) + f(3-3)

...

f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)

说明:

1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。

2)n = 1时,只有1种跳法,f(1) = 1

3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)

4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,

那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)

因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)

5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论:

f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)

6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:

f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)

f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)

可以得出:f(n) = 2*f(n-1)

7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:

         1 ,(n=0 )

f(n) = 1 ,(n=1 )

          2*f(n-1),(n>=2)

public class Solution {
    public int JumpFloorII(int target) {
        if (target <= 0) {
            return -1;
        } else if (target == 1) {
            return 1;
        } else {
            return 2 * JumpFloorII(target - 1);
        }
    }
}

三.矩形覆盖问题

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

2*n的矩形方法数定义为f(n).

第一个2*1的小矩形覆盖大矩形的左边,

要么竖着放,转化成f(n-1),

要么横着放两次,转化成f(n-2),

f(n) = f(n-1) + f(n -2)

n = 0 f = 1

n = 1 f = 1

f(n - 1) + f(n - 2)

public class Solution {
    public int RectCover(int target) {
      if(target  == 0){
            return 0;
        }
        if(target*2 == 2){
            return 1;
        }else if(target*2 == 4){
            return 2;
        }else{
            return RectCover(target-1)+RectCover(target-2);
        }
    }
}

 参考博客:

https://blog.csdn.net/gatieme/article/details/51115810

猜你喜欢

转载自blog.csdn.net/R_g_Luo/article/details/89647803
今日推荐