线性代数 (一): 证明实对称矩阵特征向量正交

设矩阵 A A 有特征值 λ 1 \lambda_1 及特征向量 u , λ 2 \bold u, \lambda_2 及特征向量 v \bold v

A u = λ 1 u A\bold u = \lambda_1 \bold u

A v = λ 2 v A\bold v = \lambda_2\bold v

v T ( A u ) = λ 2 v T u \bold v^T (A \bold u) = \lambda_2\bold v^T\bold u

( v T A ) u = ( v T A T ) u = ( A v ) T u = λ 1 v T u (\bold v^T A)\bold u = (\bold v^T A^T)\bold u = (A\bold v)^T\bold u = \lambda_1\bold v^T \bold u

所以

λ 1 v T u = λ 2 v T u \lambda_1\bold v^T\bold u = \lambda_2\bold v^T \bold u

( λ 1 λ 2 ) v T u = 0 (\lambda_1 - \lambda_2)\bold v^T \bold u = 0

因为实对称矩阵的特征值互异 (必可对角化),
所以

λ 1 = ̸ λ 2 \lambda_1 =\not \lambda_2

所以

v T u = 0 \bold v^T \bold u = 0

得证.

猜你喜欢

转载自blog.csdn.net/vinceee__/article/details/89033132