洛必达法则的证明探讨

本文会解答几个洛必达法则证明过程中的问题,同时也力求提供∞/∞型洛必达法则的证明的可以理解掌握的、能从中吸取到有用经验方法。

0/0型洛必达法则1(L’Hospital’s Rule: 0/0 case):在区间(a, b)上,f(x)和g(x)都可导、\(g^{'}\left( x \right) \neq 0\)\(\operatorname{}{f\left( x \right)} = \operatorname{}{g\left( x \right)} = 0\),如果\(\operatorname{}\frac{f^{'}(x)}{g^{'}\left( x \right)} = L\),那么

\[\operatorname{}\frac{f\left( x \right)}{g\left( x \right)} = \operatorname{}\frac{f^{'}\left( x \right)}{g^{'}\left( x \right)} = L.\]

证明:先补充定义f(a)=g(a)=0,则有\(\operatorname{}{f\left( x \right)} = f(a) = 0\)\(\operatorname{}{g\left( x \right)} = g\left( a \right) = 0\),也就是f(x)和g(x)在[a, b)上连续。补充定义后便可对f(x)和g(x)使用柯西中值定理——取任意的\(x \in (a,\ b)\),在[a, x]上有

\[\frac{f(x) - f(a)}{g\left( x \right) - g\left( a \right)} = \frac{f'(c)}{g^{'}\left( c \right)}\]

因为f(a)=g(a)=0,所以

\[\frac{f(x)}{g\left( x \right)} = \frac{f'(c)}{g^{'}\left( c \right)}\]

\(x \rightarrow a^{+}\)时,因为c在(a, x)上,所以\(c \rightarrow a^{+}\),又因为\(\operatorname{}\frac{f^{'}(x)}{g^{'}\left( x \right)} = L\),所以

\[\operatorname{}\frac{f\left( x \right)}{g\left( x \right)} = \operatorname{}\frac{f^{'}\left( c \right)}{g^{'}\left( c \right)} = \operatorname{}\frac{f^{'}\left( c \right)}{g^{'}\left( c \right)} = \operatorname{}\frac{f^{'}\left( x \right)}{g^{'}\left( x \right)} = L.\]

至此0/0型洛必达法则得证。

说明:

  1. 证明开头处补充定义f(a)=g(a)=0不会影响\(\operatorname{}\frac{f\left( x \right)}{g\left( x \right)}\)吗?不会2!函数在\(x \rightarrow a^{+}\)时的极限和x=a处的值无关(与函数在x=a处近旁的值有关),改变函数在x=a处的值并不会影响函数在\(x \rightarrow a^{+}\)时的极限。为了更形象地理解这个特性,各位请随便定义下图中\(f\left( x \right) = sinx\)\(g\left( x \right) = - 0.5x\)于x=0处的值,然后再观察一下这种改变是否会影响到\(\operatorname{}\frac{\text{sinx}}{- 0.5x}\)?(\(\operatorname{}\frac{\text{sinx}}{- 0.5x} = - 2\))。从上面的证明过程可以看出f(x)和g(x)都没必要在a处预先有定义,因此0/0型洛必达法则的成立条件也就不要求f(x)和g(x)在a处连续了。
  2. 用和上面类似的方法不难证明0/0型洛必达法则在\(x \rightarrow a^{-}\)时也成立,进而可得到在\(x \rightarrow a\)时也成立。

  3. 如果\(\operatorname{}\frac{f^{'}\left( x \right)}{g^{'}\left( x \right)}\)仍然是0/0型,那么在确认\(f^{'}\left( x \right)\)\(g^{'}\left( x \right)\)满足0/0型洛必达法则成立条件的情况下仍可得出\[\operatorname{}\frac{f\left( x \right)}{g\left( x \right)} = \operatorname{}\frac{\mathbf{f}^{\mathbf{'}}\left( \mathbf{x} \right)}{\mathbf{g}^{\mathbf{'}}\left( \mathbf{x} \right)}\mathbf{=}\operatorname{}\frac{\mathbf{f}^{\mathbf{''}}\left( \mathbf{x} \right)}{\mathbf{g}^{\mathbf{''}}\left( \mathbf{x} \right)}.\]在需要的时候,这一过程可以再继续下去3

∞/∞型洛必达法则4(L’Hospital’s Rule: ∞/∞ case):在区间(a, b)上,f(x)和g(x)都可导、\(g^{'}\left( x \right) \neq 0\)\(\operatorname{}{g\left( x \right)} = \infty\),如果\(\operatorname{}\frac{f^{'}(x)}{g^{'}\left( x \right)} = L\),那么

\[\operatorname{}\frac{f\left( x \right)}{g\left( x \right)} = \operatorname{}\frac{f^{'}\left( x \right)}{g^{'}\left( x \right)} = L.\]

我看了三本国内较为优秀的数学分析教材上面对此的证明,皆感其证明之玄妙,尤其是里面的等式做出那些变形究竟是怎样想到的,很难从中看出头绪,即便是看完证明之后要再现这些证明也感到很困难。现将这些证明转载于下,证明过程中我认为的难以构想之处已红框标示出,各位自行体会!

  • 常庆哲、史济怀,《数学分析教程》上册(2003),p179

  • 陈纪修、於崇华、金路《数学分析》上册,第二版,P125


  • 华东师范大学数学系,《数学分析》上册,第四版,P132



    面对这些证明,我所认为的难处在于里面的等式变形,不容易看清楚作那些变形的方向是什么?为什么会想到要那些变形?所以我只能将这些变换算看作是奇思妙想,说得不好听一点则曰之“奇技淫巧”, 私以为好的数学证明应当避免这些奇技淫巧,多遵循基本技巧和方法,若总是依仗一些奇思妙想难免让人对数学望而却步,读者也难以师法其中。如下便是我所寻求到的自认为可以理解掌握的、能从中吸取到有用经验的证明,至少不会像上面三种方法那样不容易看清里面的等式变形的思路。

\[\frac{f(x) - f(x_{0})}{g(x) - g(x_{0})} = \frac{f^{'}(c)}{g^{'}(c)}\]

\[\frac{\frac{f(x)}{g(x)} - \frac{f(x_{0})}{g(x)}}{1 - \frac{g(x_{0})}{g(x)}} = \frac{f^{'}(c)}{g^{'}(c)}\]

进一步可得

\[\frac{f(x)}{g(x)} = \frac{f^{'}\left( c \right)}{g^{'}\left( c \right)}\left( 1 - \frac{g\left( x_{0} \right)}{g\left( x \right)} \right) + \frac{f(x_{0})}{g(x)}\]

不容忽视的是上面进行了“分子分母同时除以g(x)”的运算,这需要保证g(x)在对应的定义域\(\lbrack x,x_{0}\rbrack\)内不等于0才行。因为\(\operatorname{}{g\left( x \right)} = \infty\),所以在a的某一近旁内必有\(g\left( x \right) \neq 0\),所以只要把\(x_{0}\)也选定在使得\(g\left( x \right) \neq 0\)的a的近旁内就可以保证“分子分母同时除以g(x)”的运算顺利进行。

然后想令\(x \rightarrow a^{+}\)看看等式右边有没有固定的趋向,但无奈发现首当其冲的是这种情况下无法确定\(\frac{f^{'}\left( c \right)}{g^{'}\left( c \right)}\)的趋向,所以这种思路行不通。当我想要放弃寻求可以理解掌握的∞/∞型洛必达法则的证明方法的时候,还好看到了Calculus with analytic geometry, 2nd Edition, George F. Simmons, p407上面的相关证明,从中获得启示后对上面的思路修改后我获得了一个自己较为满意的证明。

在上面证明一开始那里,我们可以在\((a,\ b)\)内取足够靠近\(a\)\(x_{0}\),取任意的\(x \in (a,\ x_{0})\),显然\(x < x_{0}\),因为\(\operatorname{}\frac{f^{'}(x)}{g^{'}\left( x \right)} = L\),所以这种情况下\(\frac{f^{'}(x)}{g^{'}\left( x \right)}\)也比较靠近L,

\[\frac{f(x)}{g(x)} = \frac{f^{'}\left( c \right)}{g^{'}\left( c \right)}\left( 1 - \frac{g\left( x_{0} \right)}{g\left( x \right)} \right) + \frac{f(x_{0})}{g(x)}\]

由于\(x_{0}\)被选得足够靠近\(a\)并且\(\operatorname{}{g\left( x \right)} = \infty\),所以\(x \rightarrow a^{+}\)\(1 - \frac{g\left( x_{0} \right)}{g\left( x \right)}\)比较靠近1,\(\ \frac{f\left( x_{0} \right)}{g\left( x \right)}\)比较靠近0,综合起来说就是这时候等式右边趋向于\(L \cdot 1 + 0 = L\),也就是\(\frac{f(x)}{g(x)}\)比较靠近L,此即为所求!下面是这种证明思路的严谨数学表达。

\[\frac{f(x) - f(x_{0})}{g(x) - g(x_{0})} = \frac{f^{'}(c)}{g^{'}(c)}\]

\[\frac{\frac{f(x)}{g(x)} - \frac{f(x_{0})}{g(x)}}{1 - \frac{g(x_{0})}{g(x)}} = \frac{f^{'}(c)}{g^{'}(c)}\]

进一步可得

\[\frac{f(x)}{g(x)} = \frac{f^{'}\left( c \right)}{g^{'}\left( c \right)}\left( 1 - \frac{g\left( x_{0} \right)}{g\left( x \right)} \right) + \frac{f(x_{0})}{g(x)}\]

不容忽视的是上面进行了“分子分母同时除以g(x)”的运算,这需要保证g(x)在对应的定义域\(\lbrack x,x_{0}\rbrack\)内不等于0才行。因为\(\operatorname{}{g\left( x \right)} = \infty\),所以存在\(\delta_{0} > 0\)使得\(g\left( x \right) > 0\)\({x\epsilon(a,a + \delta}_{0})\)成立,这里\(\delta_{0}\)需满足\({a + \delta}_{0} < b\)。顺便声明本文中所有的\(\delta_{i}(i = 0,1,2\ldots)\)\(> 0\)且满足\({a + \delta}_{i} < b\),也不难得出这样的\(\delta_{i}\)是始终存在的。所以有条件可以保证“分子分母同时除以g(x)”的运算顺利进行。

因为\(\operatorname{}\frac{f^{'}(x)}{g^{'}\left( x \right)} = L\),因此对于任意的\(\epsilon_{1} > 0\)存在\(\delta_{1} > 0\)使得\(L - \epsilon_{1} < \frac{f^{'}\left( x \right)}{g^{'}\left( x \right)} < {L + \epsilon}_{1}\)\({x\epsilon(a,a + \delta}_{1})\)成立。

因为\(\operatorname{}{g\left( x \right)} = \infty\),所以存在\(\delta_{2} > 0\)使得\(g\left( x \right) > g(x_{0})\)\({x\epsilon(a,a + \delta}_{2})\)成立,以至于\(\frac{g(x) - g(x_{0})}{g(x)} = 1 - \frac{g\left( x_{0} \right)}{g\left( x \right)} > 0\)

\[\frac{f(x)}{g(x)} = \frac{f^{'}\left( c \right)}{g^{'}\left( c \right)}\left( 1 - \frac{g\left( x_{0} \right)}{g\left( x \right)} \right) + \frac{f(x_{0})}{g(x)}\]

然后结合上面的不等关系可以得出
\[\left( L - \epsilon_{1} \right)\left( 1 - \frac{g\left( x_{0} \right)}{g\left( x \right)} \right) + \frac{f\left( x_{0} \right)}{g\left( x \right)} < \frac{f\left( x \right)}{g\left( x \right)} < \left( L + \epsilon_{1} \right)\left( 1 - \frac{g\left( x_{0} \right)}{g\left( x \right)} \right) + \frac{f\left( x_{0} \right)}{g\left( x \right)}\]

\[\Downarrow\]\[{\left( L - \epsilon_{1} \right) - \left( L - \epsilon_{1} \right)\frac{g\left( x_{0} \right)}{g\left( x \right)} + \frac{f\left( x_{0} \right)}{g\left( x \right)} < \frac{f\left( x \right)}{g\left( x \right)} < \left( L + \epsilon_{1} \right) - \left( L + \epsilon_{1} \right)\frac{g\left( x_{0} \right)}{g\left( x \right)} + \frac{f\left( x_{0} \right)}{g\left( x \right)}}\]

\[\Downarrow\]\[{\left( L - \epsilon_{1} \right) + \frac{- \left( L - \epsilon_{1} \right)g\left( x_{0} \right) + f\left( x_{0} \right)}{g\left( x \right)} < \frac{f\left( x \right)}{g\left( x \right)} < \left( L + \epsilon_{1} \right) + \frac{- \left( L + \epsilon_{1} \right)g\left( x_{0} \right) + f\left( x_{0} \right)}{g\left( x \right)}}\]

因为\(\operatorname{}{g\left( x \right)} = \infty\),所以对于任意的\(\epsilon_{3} > 0\)存在\(\delta_{3} > 0\)使得\(- \varepsilon_{3} < \frac{- \left( L - \epsilon_{1} \right)g\left( x_{0} \right) + f\left( x_{0} \right)}{g\left( x \right)} < \varepsilon_{3}\)\(- \varepsilon_{3} < \frac{- \left( L + \epsilon_{1} \right)g\left( x_{0} \right) + f\left( x_{0} \right)}{g\left( x \right)} < \varepsilon_{3}\)\({x\epsilon(a,a + \delta}_{3})\)成立,所以

\[\left( L - \epsilon_{1} \right) + \left( - \varepsilon_{3} \right) < \frac{f\left( x \right)}{g\left( x \right)} < \left( L + \epsilon_{1} \right) + \varepsilon_{3}\]

\[\Downarrow\]\[{L - \left( \varepsilon_{1} + \varepsilon_{3} \right) < \frac{f\left( x \right)}{g\left( x \right)} < L + (\varepsilon_{1} + \varepsilon_{3})}\]

不妨令\(\varepsilon_{1} + \varepsilon_{3} = \varepsilon\),因为\(\varepsilon_{1}\)\(\varepsilon_{3}\)都是任意的正实数,所以\(\varepsilon\)也是任意的正实数,以至于只要取\(\delta = min\{\delta_{0},\delta_{1},\delta_{2},\delta_{3}\}\)就有

\[\left| \frac{f(x)}{g(x)} - L \right| < \epsilon\]

\(x\epsilon(a,a + \delta)\)成立,至此∞/∞型洛必达法则得证!

补充说明:由

\[\frac{f(x) - f(x_{0})}{g(x) - g(x_{0})} = \frac{f^{'}(c)}{g^{'}(c)}\]

得到和\(\frac{f\left( x \right)}{g\left( x \right)}\)关联的等式的另外一种思路是在等式左右两边都乘以\(\frac{g(x) - g(x_{0})}{g(x)}\)(该式分子和上面等式左边的分母一样,为的是相乘后消去分母\(g(x) - g(x_{0})\),然后分母便成为了\(g(x)\),而分子里含有\(f\left( x \right)\),这会为接下来等式里出现\(\frac{f\left( x \right)}{g\left( x \right)}\)奠定基础),即

\[\frac{f\left( x \right) - f\left( x_{0} \right)}{g\left( x \right) - g\left( x_{0} \right)} \cdot \frac{g\left( x \right) - g\left( x_{0} \right)}{g\left( x \right)} = \frac{f^{'}\left( c \right)}{g^{'}\left( c \right)} \cdot \frac{g\left( x \right) - g\left( x_{0} \right)}{g\left( x \right)}\]

\[\Downarrow\]

\[\frac{f(x) - f(x_{0})}{g(x)} = \frac{f^{'}(c)}{g^{'}(c)} \cdot \left( 1 - \frac{g\left( x_{0} \right)}{g\left( x \right)} \right)\]

进一步可得

\[\frac{f(x)}{g(x)} = \frac{f^{'}\left( c \right)}{g^{'}\left( c \right)}\left( 1 - \frac{g\left( x_{0} \right)}{g\left( x \right)} \right) + \frac{f(x_{0})}{g(x)}\]

对于和等式左右两边相乘的因子\(\frac{g(x) - g(x_{0})}{g(x)}\),同样需要说明g(x)在对应的定义域\(\lbrack x,x_{0}\rbrack\)内不等于0才行,道理同上。

我看到Understanding Analysis, Second Edition, Stephen Abbott, p159上对∞/∞型洛必达法则的证明,也觉得那是可以理解掌握的、能从中吸取到有用经验的证明,故翻译并整理于下。

证明:因为\(\operatorname{}\frac{f^{'}(x)}{g^{'}\left( x \right)} = L\),因此对于任意的\(\epsilon_{1} > 0\)存在\(\delta_{1} > 0\)使得\(L - \epsilon_{1} < \frac{f^{'}\left( x \right)}{g^{'}\left( x \right)} < {L + \epsilon}_{1}\)\({x\epsilon(a,a + \delta}_{1})\)成立。顺便声明本证明中所有的\(\delta_{i}(i = 1,2\ldots)\)\(> 0\)且满足\({a + \delta}_{i} < b\)这个条件,也不难得出这样的\(\delta_{i}\)是始终存在的。

取常数\({t = a + \delta}_{1}\),取\(x \in (a,t)\),然后于\(\lbrack x,t\rbrack\)上应用柯西中值定理有

\[\frac{f(x) - f(t)}{g(x) - g(t)} = \frac{f^{'}(c)}{g^{'}(c)}\]

其中\(c\epsilon(x,t)\),进一步可以得出

\[L - \frac{\epsilon}{2} < \frac{f\left( x \right) - f\left( t \right)}{g\left( x \right) - g\left( t \right)} < L + \frac{\epsilon}{2}\]

为了从上面这个不等式里分离出\(\frac{f(x)}{g(x)}\),这里的方法是将上面这个不等式乘上\(\frac{g(x) - g(t)}{g(x)}\),但是\(\frac{g(x) - g(t)}{g(x)}\)的正负会影响到不等号的改变,因此有必要先确定该式的正负——因为\(\operatorname{}{g\left( x \right)} = \infty\),所以存在\(\delta_{2} > 0\)使得\(g\left( x \right) > g(t)\)\({x\epsilon(a,a + \delta}_{2})\)成立,以至于\(\frac{g(x) - g(t)}{g(x)} = 1 - \frac{g\left( t \right)}{g\left( x \right)} > 0\),因此将上面这个不等式乘上\(\frac{g(x) - g(t)}{g(x)}\)后就有

\[(L - \frac{\epsilon}{2})(1 - \frac{g\left( t \right)}{g\left( x \right)}) < \frac{f\left( x \right) - f\left( t \right)}{g\left( x \right)} < (L + \frac{\epsilon}{2})(1 - \frac{g\left( t \right)}{g\left( x \right)})\]

进一步变形可得到

\[L - \frac{\epsilon}{2} + \frac{- Lg\left( t \right) + \frac{\epsilon}{2}g\left( t \right) + f\left( t \right)}{g\left( x \right)} < \frac{f\left( x \right)}{g\left( x \right)} < L + \frac{\epsilon}{2} + \frac{- Lg\left( t \right) - \frac{\epsilon}{2}g\left( t \right) + f(t)}{g(x)}\]

因为\(\operatorname{}{g\left( x \right)} = \infty\),所以存在\(\delta_{3} > 0\)使得\(\frac{- Lg\left( t \right) + \frac{\epsilon}{2}g\left( t \right) + f\left( t \right)}{g\left( x \right)}\)\(\frac{- Lg\left( t \right) - \frac{\epsilon}{2}g\left( t \right) + f(t)}{g(x)}\)均小于\(\frac{\epsilon}{2}\)\({x\epsilon(a,a + \delta}_{3})\)成立,以至于只要取 \(\delta = min\{\delta_{1},\delta_{2},\delta_{3}\}\)就有

\[\left| \frac{f(x)}{g(x)} - L \right| < \frac{\epsilon}{2}\]

\(x\epsilon(a,a + \delta)\)成立,至此∞/∞型洛必达法则得证!
5


  1. Foundations of Analysis, 2nd Edition, David French Belding, Kevin J. Mitchell, p109

  2. 数学分析,第二版,陈纪修,於崇华,金路,p185

  3. 数学分析教程,第二版,常庚哲,史济怀,p177

  4. 数学分析教程,第二版,常庚哲,史济怀,p179

  5. 数学分析,第二版,陈纪修,於崇华,金路,p186

猜你喜欢

转载自www.cnblogs.com/iMath/p/10461442.html
今日推荐