洛必达法则

洛必达法则

对于极限,
\[\lim\limits_{\substack{x\to a \\ (x\to\infty) } }\frac{f(x)}{g(x)}\]

对于未定式,也就是$ \frac{0}{0}$, \(\frac{\infty}{\infty}\), \(\infty-\infty\), \(0\cdot\infty\), \(0^0\), \(0^\infty\), \(\infty^0\), \(1^\infty\) 等形式的极限,都可以直接或者变形后用洛必达法则进行计算。
注意:可以用等价无穷笑的先用等价无穷小代换后再计算

1. \(\frac{0}{0}\)

例一:求极限

\[\lim\limits_{\substack{x\to 0 } }\frac{x-tanx}{(sinx)^3}\]

解:代价无穷小代换:\(sinx\sim x\)
\[\lim\limits_{\substack{x\to 0 } }\frac{x-tanx}{(sinx)^3}\]
\[=\lim\limits_{\substack{x\to 0 } }\frac{x-tanx}{(x)^3}=\lim\limits_{\substack{x\to 0 } }\frac{(x-tanx)'}{(x^3)' }=\lim\limits_{\substack{x\to 0 } }\frac{1-sex^2x}{3x^2 } \]
\[=\lim\limits_{\substack{x\to 0 } }\frac{-tan^2x}{3x^2}=\lim\limits_{\substack{x\to 0 } }\frac{-x^2}{3x^2}\]
\[=-\frac{1}{3}\]


  1. $ tanx^2=secx^2-1$

2.\(tanx \sim x\)

补充:常用等价无穷小\(x\to 0\)


\[sinx \sim x\]
\[tanx\sim x\]
\[1-cosx \sim \frac{1}{2}x^2\]
\[arcsinx \sim x\]
\[arctanx \sim x\]
\[a^x-1 \sim xlina\]
\[e^x-1 \sim x\]


点乘:\cdot
\(a\cdot b\)

叉乘:\times
\(a\times b\)

除以:\div
\(a\div b\)

~在Latex表示空格,可以用\sim转义代替
\[A\sim B\]

$$A\sim B$$

例二:求极限

\[\lim\limits_{\substack{x \to 0 } } \frac{e^x+e^{-x}-2}{x-sinx}\]

\[ \color{#ea4335}{ =\lim\limits_{\substack{x\to 0 } }\frac{e^x-e^{-x}}{1-cosx}(第一次使用洛必达法则)}\]
\[=\lim\limits_{\substack{x\to 0 } }\frac{e^x-e^{-x}}{\frac{1}{2}x^2}(等价无穷小:1-cosx\sim \frac{1}{2}x^2)\]
\[=\lim\limits_{\substack{x\to 0 } }\frac{e^x+e^{-x}}{x}(第二次使用洛必达法则) \color{#34a853 }{\rightarrow} \color{#34a853}{\frac{2}{0}} \]
\[=\infty\]


2. $ \frac{\infty}{\infty}$型

例三:求

\[\lim\limits_{\substack{x\to +\infty } }\frac{lnx}{x^{\alpha}},(\alpha>0)\]

解:\[=\lim\limits_{\substack{x\to +\infty } }\frac{ {1}\over{x}}{\alpha x^{\alpha-1}}=\lim\limits_{\substack{x\to +\infty } }\frac{1}{ \alpha\cdot x^{\alpha}}=0\]

\[(x\rightarrow +\infty,x^{\alpha}\to \infty )\]

3. \(\infty-\infty\)

技巧:通分化简,通分,根式有理化;变量替换等方法转化为 \(\frac{0}{0}\)型,或\(\frac{\infty}{\infty}\)型再计算。

例四:求

\[\lim\limits_{\substack{x\to \frac{\pi}{2}} }(secx-tanx)\]

解:
\[\lim\limits_{\substack{x\to \frac{\pi}{2}} }(secx-tanx)\]
\[=\lim\limits_{\substack{x\to \frac{\pi}{2}} }(\frac{1}{cosx}-\frac{sinx}{cosx})\]
\[=\lim\limits_{\substack{x\to \frac{\pi}{2}} }(\frac{1-sinx}{cosx})\]
\[=\lim\limits_{\substack{x\to \frac{\pi}{2}} }\frac{cosx}{sinx} \to \frac{0}{1}\]
\[=0\]

4. \(0 \cdot\infty\)

转化为\(\frac{0}{0}\)型,或\(\frac{\infty}{\infty}\)

例五:求

\[\lim\limits_{\substack{x\to 0^+ } } sinxlnx\]

解:\[=\lim\limits_{\substack{x\to 0^+ } } \frac{lnx}{1\over{sinx}}\]
\[=\lim\limits_{\substack{x\to 0^+ } } \frac{lnx}{1\over{x}}=\lim\limits_{\substack{x\to 0^+ } } \frac{1\over{x}}{-{1\over{x^2}}}\]
\[=-\lim\limits_{\substack{x\to 0^+ } } x\]
\[=0\]

5. \(0^0,\infty^0,1^{\infty}\)

利用 \(\lim f(x)^{g(x)}=e^{\lim g(x)lnf(x)}\)转化为\(0\cdot\infty\),再转化为\(\frac{0}{0}\)型或\(\frac{\infty}{\infty}\)

例六:求

\[\lim\limits_{\substack{x\to 0^+ } } x^{sinx}\]

解:\[\lim\limits_{\substack{x\to 0^+ } } x^{sinx}=e^{\lim\limits_{\substack{x\to 0^+ }}sinxln(x) }\]
\[=e^o=1\]

例七:求

\[\lim\limits_{\substack {x\to 0^+} } (1+cotx)^{{1}\over{lnx}}\]

解: \[=e^{\lim\limits_{\substack {x\to 0^+} } {{1}\over{lnx}}ln(1+cotx) }\]
\[=e^{\lim\limits_{\substack {x\to 0^+} } \frac{ln(1+cotx)}{lnx} }=e^{\lim\limits_{\substack {x\to 0^+} } \frac{ln(1+cotx)'}{(lnx)'} }\]
\[=e^{\lim\limits_{\substack {x\to 0^+} } {\left. {(\frac{-csc^2x }{1+cotx})} \middle / (\frac{1}{x})\right.} }\]
\[=e^{\lim\limits_{\substack {x\to 0^+} } {\left. {-x}\middle /{(sin^2x+sinxcosx)} \right.} }=e^{\lim\limits_{\substack {x\to 0^+} } {\left. {-x}\middle /{sinx(sinx+cosx)} \right.} }\]
\[=e^{\lim\limits_{\substack {x\to 0^+} } {\left. {-1}\middle /{(sinx+cosx)} \right.} }\]
\[=e^{-1}\]

函数图像

Reference:

  1. 高数|洛必达法则的基础与进阶

猜你喜欢

转载自www.cnblogs.com/tamkery/p/11614640.html
今日推荐