极客时间——数据结构与算法(7):如何轻松写出正确的链表代码?

链表的基础知识很简单,但是 想要写好链表代码并不是容易的事儿,尤其是那些复杂的链表操作,比如链表反转、有序链表合并等。下面推荐几个写链表代码的技巧:

技巧一:理解指针或引用的含义

事实上,看懂链表的结构并不是很难,但是一旦把它和指针混在一起,就很容易让人摸不着头脑。所以,要想写对链表代码,首先就要理解好指针。  我们知道,有些语言有“指针”的概念,比如 C 语言;有些语言没有指针,取而代之的是“引用”,比如 Java、Python。不管是“指针”还是“引用”,实际上,它们的意思都是一样的,都是存储所指对象的内存地址。  

接下来,我会拿 C 语言中的“指针”来讲解,如果你用的是 Java 或者其他没有指针的语言也没关系,你把它理解成“引用”就可以了。  实际上,对于指针的理解,你只需要记住下面这句话就可以了:  将某个变量赋值给指针,实际上就是将这个变量的地址赋值给指针,或者反过来说,指针中存储了这个变量的内存地址,指向了这个变量,通过指针就能找到这个变量。  这句话听起来还挺拗口的,你可以先记住。

我们回到链表代码的编写过程中,我来慢慢给你解释。  在编写链表代码的时候,我们经常会有这样的代码:p->next=q。这行代码是说,p 结点中的 next 指针存储了 q 结点的内存地址。  还有一个更复杂的,也是我们写链表代码经常会用到的:p->next=p->next->next。这行代码表示,p 结点的 next 指针存储了 p 结点的下下一个结点的内存地址。  掌握了指针或引用的概念,你应该可以很轻松地看懂链表代码。 

技巧二:警惕指针丢失和内存泄漏

不知道你有没有这样的感觉,写链表代码的时候,指针指来指去,一会儿就不知道指到哪里了。所以,我们在写的时候,一定注意不要弄丢了指针。  指针往往都是怎么弄丢的呢?我拿单链表的插入操作为例来给你分析一下。

   如图所示,我们希望在结点 a 和相邻的结点 b 之间插入结点 x,假设当前指针 p 指向结点 a。如果我们将代码实现变成下面这个样子,就会发生指针丢失和内存泄露。

p->next = x;  // 将 p 的 next 指针指向 x 结点;
x->next = p->next;  // 将 x 的结点的 next 指针指向 b 结点;

初学者经常会在这儿犯错。p->next 指针在完成第一步操作之后,已经不再指向结点 b 了,而是指向结点 x。第 2 行代码相当于将 x 赋值给 x->next,自己指向自己。因此,整个链表也就断成了两半,从结点 b 往后的所有结点都无法访问到了。  

对于有些语言来说,比如 C 语言,内存管理是由程序员负责的,如果没有手动释放结点对应的内存空间,就会产生内存泄露。所以,我们插入结点时,一定要注意操作的顺序,要先将结点 x 的 next 指针指向结点 b,再把结点 a 的 next 指针指向结点 x,这样才不会丢失指针,导致内存泄漏。所以,对于刚刚的插入代码,我们只需要把第 1 行和第 2 行代码的顺序颠倒一下就可以了。

 同理,删除链表结点时,也一定要记得手动释放内存空间,否则,也会出现内存泄漏的问题。当然,对于像 Java 这种虚拟机自动管理内存的编程语言来说,就不需要考虑这么多了。  

技巧三:利用哨兵简化实现难度

首先,我们先来回顾一下单链表的插入和删除操作。如果我们在结点 p 后面插入一个新的结点,只需要下面两行代码就可以搞定。  

new_node->next = p->next;
p->next = new_node; 

但是,当我们要向一个空链表中插入第一个结点,刚刚的逻辑就不能用了。我们需要进行下面这样的特殊处理,其中 head 表示链表的头结点。所以,从这段代码,我们可以发现,对于单链表的插入操作,第一个结点和其他结点的插入逻辑是不一样的。

 if (head == null) { 
     head = new_node; 
 } 

我们再来看单链表结点删除操作。如果要删除结点 p 的后继结点,我们只需要一行代码就可以搞定。  

p->next = p->next->next;

但是,如果我们要删除链表中的最后一个结点,前面的删除代码就不 work 了。跟插入类似,我们也需要对于这种情况特殊处理。写成代码是这样子的:

 if (head->next == null) {    
    head = null; 
 } 

从前面的一步一步分析,我们可以看出,针对链表的插入、删除操作,需要对插入第一个结点和删除最后一个结点的情况进行特殊处理。这样代码实现起来就会很繁琐,不简洁,而且也容易因为考虑不全而出错。如何来解决这个问题呢?  

技巧三中提到的哨兵就要登场了。哨兵,解决的是国家之间的边界问题。同理,这里说的哨兵也是解决“边界问题”的,不直接参与业务逻辑。  

还记得如何表示一个空链表吗?head=null 表示链表中没有结点了。其中 head 表示头结点指针,指向链表中的第一个结点。  

如果我们引入哨兵结点,在任何时候,不管链表是不是空,head 指针都会一直指向这个哨兵结点。我们也把这种有哨兵结点的链表叫带头链表。相反,没有哨兵结点的链表就叫作不带头链表。  

我画了一个带头链表,你可以发现,哨兵结点是不存储数据的。因为哨兵结点一直存在,所以插入第一个结点和插入其他结点,删除最后一个结点和删除其他结点,都可以统一为相同的代码实现逻辑了。    

实际上,这种利用哨兵简化编程难度的技巧,在很多代码实现中都有用到,比如插入排序、归并排序、动态规划等。这些内容我们后面才会讲,现在为了让你感受更深,我再举一个非常简单的例子。代码我是用 C 语言实现的,不涉及语言方面的高级语法,很容易看懂,你可以类比到你熟悉的语言。  

代码一:  

// 在数组 a 中,查找 key,返回 key 所在的位置
// 其中,n 表示数组 a 的长度
int find(char* a, int n, char key) {
  // 边界条件处理,如果 a 为空,或者 n<=0,说明数组中没有数据,就不用 while 循环比较了
  if(a == null || n <= 0) {
    return -1;
  }
  
  int i = 0;
  // 这里有两个比较操作:i<n 和 a[i]==key.
  while (i < n) {
    if (a[i] == key) {
      return i;
    }
    ++i;
  }
  
  return -1;
}

代码二:  

// 在数组 a 中,查找 key,返回 key 所在的位置
// 其中,n 表示数组 a 的长度
// 我举 2 个例子,你可以拿例子走一下代码
// a = {4, 2, 3, 5, 9, 6}  n=6 key = 7
// a = {4, 2, 3, 5, 9, 6}  n=6 key = 6
int find(char* a, int n, char key) {
  if(a == null || n <= 0) {
    return -1;
  }
  
  // 这里因为要将 a[n-1] 的值替换成 key,所以要特殊处理这个值
  if (a[n-1] == key) {
    return n-1;
  }
  
  // 把 a[n-1] 的值临时保存在变量 tmp 中,以便之后恢复。tmp=6。
  // 之所以这样做的目的是:希望 find() 代码不要改变 a 数组中的内容
  char tmp = a[n-1];
  // 把 key 的值放到 a[n-1] 中,此时 a = {4, 2, 3, 5, 9, 7}
  a[n-1] = key;
  
  int i = 0;
  // while 循环比起代码一,少了 i<n 这个比较操作
  while (a[i] != key) {
    ++i;
  }
  
  // 恢复 a[n-1] 原来的值, 此时 a= {4, 2, 3, 5, 9, 6}
  a[n-1] = tmp;
  
  if (i == n-1) {
    // 如果 i == n-1 说明,在 0...n-2 之间都没有 key,所以返回 -1
    return -1;
  } else {
    // 否则,返回 i,就是等于 key 值的元素的下标
    return i;
  }
}

 对比两段代码,在字符串 a 很长的时候,比如几万、几十万,你觉得哪段代码运行得更快点呢?答案是代码二,因为两段代码中执行次数最多就是 while 循环那一部分。第二段代码中,我们通过一个哨兵 a[n-1] = key,成功省掉了一个比较语句 i<n,不要小看这一条语句,当累积执行万次、几十万次时,累积的时间就很明显了。  

当然,这只是为了举例说明哨兵的作用,你写代码的时候千万不要写第二段那样的代码,因为可读性太差了。大部分情况下,我们并不需要如此追求极致的性能。  

技巧四:重点留意边界条件处理

软件开发中,代码在一些边界或者异常情况下,最容易产生 Bug。链表代码也不例外。要实现没有 Bug 的链表代码,一定要在编写的过程中以及编写完成之后,检查边界条件是否考虑全面,以及代码在边界条件下是否能正确运行。  

我经常用来检查链表代码是否正确的边界条件有这样几个:  

如果链表为空时,代码是否能正常工作?  

如果链表只包含一个结点时,代码是否能正常工作?  

如果链表只包含两个结点时,代码是否能正常工作?  

代码逻辑在处理头结点和尾结点的时候,是否能正常工作?  

当你写完链表代码之后,除了看下你写的代码在正常的情况下能否工作,还要看下在上面我列举的几个边界条件下,代码仍然能否正确工作。如果这些边界条件下都没有问题,那基本上可以认为没有问题了。  

当然,边界条件不止我列举的那些。针对不同的场景,可能还有特定的边界条件,这个需要你自己去思考,不过套路都是一样的。  

实际上,不光光是写链表代码,你在写任何代码时,也千万不要只是实现业务正常情况下的功能就好了,一定要多想想,你的代码在运行的时候,可能会遇到哪些边界情况或者异常情况。遇到了应该如何应对,这样写出来的代码才够健壮!  

技巧五:举例画图,辅助思考

对于稍微复杂的链表操作,比如前面我们提到的单链表反转,指针一会儿指这,一会儿指那,一会儿就被绕晕了。总感觉脑容量不够,想不清楚。所以这个时候就要使用大招了,举例法和画图法。  

你可以找一个具体的例子,把它画在纸上,释放一些脑容量,留更多的给逻辑思考,这样就会感觉到思路清晰很多。比如往单链表中插入一个数据这样一个操作,我一般都是把各种情况都举一个例子,画出插入前和插入后的链表变化,如图所示:    

看图写代码,是不是就简单多啦?而且,当我们写完代码之后,也可以举几个例子,画在纸上,照着代码走一遍,很容易就能发现代码中的 Bug。  

技巧六:多写多练,没有捷径

如果你已经理解并掌握了我前面所讲的方法,但是手写链表代码还是会出现各种各样的错误,也不要着急。因为我最开始学的时候,这种状况也持续了一段时间。 我精选了 5 个常见的链表操作。你只要把这几个操作都能写熟练,不熟就多写几遍,我保证你之后再也不会害怕写链表代码。  

单链表反转  

链表中环的检测  

两个有序的链表合并  

删除链表倒数第 n 个结点  

求链表的中间结点  

参考代码实现:

package linkedlist;

/**
 * 1) 单链表反转
 * 2) 链表中环的检测
 * 3) 两个有序的链表合并
 * 4) 删除链表倒数第n个结点
 * 5) 求链表的中间结点
 *
 * Author: Zheng
 */
public class LinkedListAlgo {

  // 单链表反转
  public static Node reverse(Node list) {
    Node headNode = null;

    Node previousNode = null;
    Node currentNode = list;
    while (currentNode != null) {
      Node nextNode = currentNode.next;
      if (nextNode == null) {
        headNode = currentNode;
      }
      currentNode.next = previousNode;
      previousNode = currentNode;
      currentNode = nextNode;
    }

    return headNode;
  }

  // 检测环
  public static boolean checkCircle(Node list) {
    if (list == null) return false;

    Node fast = list.next;
    Node slow = list;

    while (fast != null && fast.next != null) {
      fast = fast.next.next;
      slow = slow.next;

      if (slow == fast) return true;
    }

    return false;
  }

  // 有序链表合并
  public static Node mergeSortedLists(Node la, Node lb) {
    if (la == null) return lb;
    if (lb == null) return la;

    Node p = la;
    Node q = lb;
    Node head;
    if (p.data < q.data) {
      head = p;
      p = p.next;
    } else {
      head = q;
      q = q.next;
    }
    Node r = head;

    while (p != null && q != null) {
      if (p.data < q.data) {
        r.next = p;
        p = p.next;
      } else {
        r.next = q;
        q = q.next;
      }
      r = r.next;
    }

    if (p != null) {
      r.next = p;
    } else {
      r.next = q;
    }

    return head;
  }

  // 删除倒数第K个结点
  public static Node deleteLastKth(Node list, int k) {
    Node fast = list;
    int i = 1;
    while (fast != null && i < k) {
      fast = fast.next;
      ++i;
    }

    if (fast == null) return list;

    Node slow = list;
    Node prev = null;
    while (fast.next != null) {
      fast = fast.next;
      prev = slow;
      slow = slow.next;
    }

    if (prev == null) {
      list = list.next;
    } else {
      prev.next = prev.next.next;
    }
    return list;
  }

  // 求中间结点
  public static Node findMiddleNode(Node list) {
    if (list == null) return null;

    Node fast = list;
    Node slow = list;

    while (fast.next != null && fast.next.next != null) {
      fast = fast.next.next;
      slow = slow.next;
    }

    return slow;
  }

  public static void printAll(Node list) {
    Node p = list;
    while (p != null) {
      System.out.print(p.data + " ");
      p = p.next;
    }
    System.out.println();
  }

  public static Node createNode(int value) {
    return new Node(value, null);
  }

  public static class Node {
    private int data;
    private Node next;

    public Node(int data, Node next) {
      this.data = data;
      this.next = next;
    }

    public int getData() {
      return data;
    }
  }

}

猜你喜欢

转载自blog.csdn.net/weixin_40805079/article/details/85838834