050惯性系到地球系的导航方程

版权声明:本文系原创文章,没有版权,随意转载,不用告知! https://blog.csdn.net/Pro2015/article/details/84573804

假设惯性系中的导航方程为:
{ r ˙ i = V i V ˙ i = C e i C b e f b + C e i g e R ˙ b i = R b i Ω i b b \begin{cases} \dot r^i = V^i \\ \dot V^i = C_e^i C_b^e f^b + C_e^i g^e \\ \dot R_b^i = R_b^i \Omega_{ib}^b \end{cases}

Ω i b b \Omega_{ib}^b ω i b b \omega_{ib}^b 的反对称阵。

为推得地球系上的导航方程,下面再推导两个方程:

1、坐标变换矩阵微分方程

假设e系有一固定矢量 r e r^e (注意这个固定矢量是常值向量),变换至i系得到 r i r^i
r i = C e i r e r^i=C_e^i r^e
求导:
r ˙ i = C ˙ e i r e \dot r^i = \dot C_e^i r^e
而由于速度等于角速度乘矢径:
r ˙ i = ω i × r i = Ω i r i = C e i Ω i e e C i e r i \dot r^i = \omega^i \times r^i = \Omega^i r^i = C_e^i \Omega_{ie}^e C_i^e r^i
带入上式:
C e i Ω i e e C i e r i = C ˙ e i r e C_e^i \Omega_{ie}^e C_i^e r^i = \dot C_e^i r^e
即:
(1) C ˙ e i = C e i Ω i e e \tag{1} \dot C_e^i = C_e^i \Omega_{ie}^e

2、向量变换关系式

假设任意a系中的位置矢量(注意不是常值向量),变换到惯性系有:
r i = C a i r a r^i = C_a^i r^a
求导:
r ˙ i = C ˙ a i r a + C a i r ˙ a \dot r^i = \dot C_a^i r^a + C_a^i \dot r^a
顾及公式(1):
r ˙ i = C a i Ω i a a r a + C a i r ˙ a \dot r^i = C_a^i \Omega_{ia}^a r^a + C_a^i \dot r^a
再求导:
r ¨ i = C ˙ a i Ω i a a r a + C a i Ω ˙ i a a r a + C a i Ω i a a r ˙ a + C ˙ a i r ˙ a + C a i r ¨ a \ddot r^i = \dot C_a^i \Omega_{ia}^a r^a + C_a^i \dot\Omega_{ia}^a r^a + C_a^i \Omega_{ia}^a \dot r^a + \dot C_a^i \dot r^a + C_a^i \ddot r^a
顾及公式(1):
(2) r ¨ i = C a i Ω i a a Ω i a a r a + C a i Ω ˙ i a a r a + C a i Ω i a a r ˙ a + C a i Ω i a a r ˙ a + C a i r ¨ a = C a i ( Ω i a a Ω i a a r a + Ω ˙ i a a r a + Ω i a a r ˙ a + Ω i a a r ˙ a + r ¨ a ) = C a i ( r ¨ a + 2 Ω i a a r ˙ a + Ω ˙ i a a r a + Ω i a a Ω i a a r a ) \tag{2} \begin{aligned} \ddot r^i &= C_a^i \Omega_{ia}^a \Omega_{ia}^a r^a + C_a^i \dot\Omega_{ia}^a r^a + C_a^i \Omega_{ia}^a \dot r^a + C_a^i \Omega_{ia}^a \dot r^a + C_a^i \ddot r^a \\ &= C_a^i(\Omega_{ia}^a \Omega_{ia}^a r^a + \dot\Omega_{ia}^a r^a + \Omega_{ia}^a \dot r^a + \Omega_{ia}^a \dot r^a + \ddot r^a) \\ &= C_a^i(\ddot r^a + 2\Omega_{ia}^a \dot r^a + \dot\Omega_{ia}^a r^a + \Omega_{ia}^a \Omega_{ia}^a r^a) \end{aligned}

下面进行惯性系导航方程向地球系的转换:

将公式(2)中的a系换为e系,那么有 Ω ˙ i e e \dot\Omega_{ie}^e 等于0(地球自转角速度作为常数),便有:
(3) r ¨ i = C e i ( r ¨ e + 2 Ω i e e r ˙ e + Ω i e e Ω i e e r e ) \tag{3} \ddot r^i = C_e^i(\ddot r^e + 2\Omega_{ie}^e \dot r^e + \Omega_{ie}^e \Omega_{ie}^e r^e)
而:
(4) r ¨ i = f i + G i = C e i ( C b e f b + G e ) \tag{4} \ddot r^i = f^i + G^i = C_e^i(C_b^e f^b+G^e)
其中 f b f^b 为比力向量, G e G^e 为地球引力加速度向量;
比较公式(3)和公式(4)可得:
C b e f b + G e = r ¨ e + 2 Ω i e e r ˙ e + Ω i e e Ω i e e r e C_b^e f^b+G^e = \ddot r^e + 2\Omega_{ie}^e \dot r^e + \Omega_{ie}^e \Omega_{ie}^e r^e

r ¨ e = C b e f b 2 Ω i e e r ˙ e + G e Ω i e e Ω i e e r e \ddot r^e = C_b^e f^b- 2\Omega_{ie}^e \dot r^e + G^e - \Omega_{ie}^e \Omega_{ie}^e r^e
由于地球系中重力向量=引力加速度向量+离心加速度矢量,即:
g e = G e Ω i e e Ω i e e r e g^e = G^e - \Omega_{ie}^e \Omega_{ie}^e r^e
所以:
r ¨ e = C b e f b 2 Ω i e e r ˙ e + g e = V ˙ e \ddot r^e = C_b^e f^b- 2\Omega_{ie}^e \dot r^e + g^e= \dot V^e
结合:
r ˙ e = V e \dot r^e = V^e

C ˙ b e = C b e Ω e b b = C b e ( Ω i b b Ω i e b ) \dot C_b^e = C_b^e \Omega_{eb}^b = C_b^e(\Omega_{ib}^b - \Omega_{ie}^b)

得到地球系中的导航方程:
{ r ˙ e = V e V ˙ e = C b e f b 2 Ω i e e r ˙ e + g e C ˙ b e = C b e ( Ω i b b Ω i e b ) \begin{cases} \dot r^e = V^e\\ \dot V^e=C_b^e f^b- 2\Omega_{ie}^e \dot r^e + g^e\\ \dot C_b^e = C_b^e(\Omega_{ib}^b - \Omega_{ie}^b) \end{cases}


参考自:《GPS/INS组合导航定位及其应用》,董绪荣
资源页中下载:042分享资料下载地址汇总

猜你喜欢

转载自blog.csdn.net/Pro2015/article/details/84573804