关于熵的知识——信息论基本概念

信息论

1 信息量

首先是信息量。假设我们听到了两件事,分别如下: 
事件A:巴西队进入了2018世界杯决赛圈。 
事件B:中国队进入了2018世界杯决赛圈。 
仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。所以当越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。那么信息量应该和事件发生的概率有关。

假设X是一个离散型随机变量,其取值集合为χ,概率分布函数p(x)=Pr(X=x),x∈χ,则定义事件X=x0的信息量为:

I(x0)=−log(p(x0))


由于是概率所以p(x0)的取值范围是[0,1],绘制为图形如下: 
这里写图片描述 可见该函数符合我们对信息量的直觉。

2 熵

考虑另一个问题,对于某个事件,有n种可能性,每一种可能性都有一个概率p(xi) 
这样就可以计算出某一种可能性的信息量。举一个例子,假设你拿出了你的电脑,按下开关,会有三种可能性,下表列出了每一种可能的概率及其对应的信息量

序号 事件 概率p 信息量I
A 电脑正常开机 0.7 -log(p(A))=0.36
B 电脑无法开机 0.2 -log(p(B))=1.61
C 电脑爆炸了 0.1

-log(p(C))=2.30

=−p(x)log(p(x))−(1−p(x))log(1−p(x))

3 相对熵(KL散度)

相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异

维基百科对相对熵的定义

In the context of machine learning, DKL(P‖Q) is often called the information gain achieved if P is used instead of Q.

即如果用P来描述目标问题,而不是用Q来描述目标问题,得到的信息增量。 

在机器学习中,P往往用来表示样本的真实分布,比如[1,0,0]表示当前样本属于第一类。Q用来表示模型所预测的分布,比如[0.7,0.2,0.1] 
直观的理解就是如果用P来描述样本,那么就非常完美。而用Q来描述样本,虽然可以大致描述,但是不是那么的完美,信息量不足,需要额外的一些“信息增量”才能达到和P一样完美的描述。如果我们的Q通过反复训练,也能完美的描述样本,那么就不再需要额外的“信息增量”,Q等价于P。

KL散度的计算公式: 


n为事件的所有可能性。 
DKL的值越小,表示q分布和p分布越接近

4 交叉熵

机器学习中交叉熵的应用

1 为什么要用交叉熵做loss函数?

在线性回归问题中,常常使用MSE(Mean Squared Error)作为loss函数,比如: 

这里的m表示m个样本的,loss为m个样本的loss均值。 
MSE在线性回归问题中比较好用,那么在逻辑分类问题中还是如此么?

2 交叉熵在单分类问题中的使用

这里的单类别是指,每一张图像样本只能有一个类别,比如只能是狗或只能是猫。 
交叉熵在单分类问题上基本是标配的方法 

上式为一张样本的loss计算方法。式2.1中n代表着n种类别。 
举例说明,比如有如下样本 

对应的标签和预测值 

* 青蛙 老鼠
Label 0 1 0
Pred 0.3 0.6 0.1

3 交叉熵在多分类问题中的使用

这里的多类别是指,每一张图像样本可以有多个类别,比如同时包含一只猫和一只狗 
和单分类问题的标签不同,多分类的标签是n-hot。 
比如下面这张样本图,即有青蛙,又有老鼠,所以是一个多分类问题 

对应的标签和预测值 

* 青蛙 老鼠
Label 0 1 1
Pred 0.1 0.7 0.8

值得注意的是,这里的Pred不再是通过softmax计算的了,这里采用的是sigmoid。将每一个节点的输出归一化到[0,1]之间。所有Pred值的和也不再为1。换句话说,就是每一个Label都是独立分布的,相互之间没有影响。所以交叉熵在这里是单独对每一个节点进行计算,每一个节点只有两种可能值,所以是一个二项分布。前面说过对于二项分布这种特殊的分布,熵的计算可以进行简化。

同样的,交叉熵的计算也可以简化,即 

注意,上式只是针对一个节点的计算公式。这一点一定要和单分类loss区分开来。 
例子中可以计算为: 

参考链接

[1]https://blog.csdn.net/tsyccnh/article/details/79163834

猜你喜欢

转载自blog.csdn.net/weixin_41806692/article/details/82463577