分布式缓存学习笔记

分布式缓存

1. 开场白

1.1 为啥在项目里要用缓存呢?

用缓存,主要是俩用途,高性能和高并发

1)高性能

假设这么个场景,你有个操作,一个请求过来,吭哧吭哧各种乱七八糟操作mysql,半天查出来一个结果,耗时600ms。但是这个结果可能接下来几个小时都不会变了,或者变了也可以不用立即反馈给用户。那么此时咋办?
缓存啊,折腾600ms查出来的结果,扔缓存里,一个key对应一个value,下次再有人查,别走mysql折腾600ms了。直接从缓存里,通过一个key查出来一个value,2ms搞定。性能提升300倍。
这就是所谓的高性能。
就是把你一些复杂操作耗时查出来的结果,如果确定后面不咋变了,然后但是马上还有很多读请求,那么直接结果放缓存,后面直接读缓存就好了。

高性能

2)高并发

mysql这么重的数据库,压根儿设计不是让你玩儿高并发的,虽然也可以玩儿,但是天然支持不好。mysql单机支撑到2000qps也开始容易报警了。
所以要是你有个系统,高峰期一秒钟过来的请求有1万,那一个mysql单机绝对会死掉。你这个时候就只能上缓存,把很多数据放缓存,别放mysql。缓存功能简单,说白了就是key-value式操作,单机支撑的并发量轻松一秒几万十几万,支撑高并发so easy。单机承载并发量是mysql单机的几十倍。

在这里插入图片描述

1.2 用了缓存之后会有啥不良的后果?

常见的缓存问题

1)缓存与数据库双写不一致

2)缓存雪崩

3)缓存穿透

4)缓存并发竞争

2. redis线程模型

2.1 redis和memcached有啥区别

redis作者给出的几个比较吧

1)Redis支持服务器端的数据操作:Redis相比Memcached来说,拥有更多的数据结构和并支持更丰富的数据操作,通常在Memcached里,你需要将数据拿到客户端来进行类似的修改再set回去。这大大增加了网络IO的次数和数据体积。在Redis中,这些复杂的操作通常和一般的GET/SET一样高效。所以,如果需要缓存能够支持更复杂的结构和操作,那么Redis会是不错的选择。

2)内存使用效率对比:使用简单的key-value存储的话,Memcached的内存利用率更高,而如果Redis采用hash结构来做key-value存储,由于其组合式的压缩,其内存利用率会高于Memcached。

3)性能对比:由于Redis只使用单核,而Memcached可以使用多核,所以平均每一个核上Redis在存储小数据时比Memcached性能更高。而在100k以上的数据中,Memcached性能要高于Redis,虽然Redis最近也在存储大数据的性能上进行优化,但是比起Memcached,还是稍有逊色。

4)集群模式:memcached没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据;但是redis目前是原生支持cluster模式的,redis官方就是支持redis cluster集群模式的,比memcached来说要更好

2.2 redis的线程模型

1)文件事件处理器

redis基于reactor模式开发了网络事件处理器,这个处理器叫做文件事件处理器,file event handler。这个文件事件处理器,是单线程的,redis才叫做单线程的模型,采用IO多路复用机制同时监听多个socket,根据socket上的事件来选择对应的事件处理器来处理这个事件。
如果被监听的socket准备好执行accept、read、write、close等操作的时候,跟操作对应的文件事件就会产生,这个时候文件事件处理器就会调用之前关联好的事件处理器来处理这个事件。
文件事件处理器是单线程模式运行的,但是通过IO多路复用机制监听多个socket,可以实现高性能的网络通信模型,又可以跟内部其他单线程的模块进行对接,保证了redis内部的线程模型的简单性。
文件事件处理器的结构包含4个部分:多个socket,IO多路复用程序,文件事件分派器,事件处理器(命令请求处理器、命令回复处理器、连接应答处理器,等等)。
多个socket可能并发的产生不同的操作,每个操作对应不同的文件事件,但是IO多路复用程序会监听多个socket,但是会将socket放入一个队列中排队,每次从队列中取出一个socket给事件分派器,事件分派器把socket给对应的事件处理器。
然后一个socket的事件处理完之后,IO多路复用程序才会将队列中的下一个socket给事件分派器。文件事件分派器会根据每个socket当前产生的事件,来选择对应的事件处理器来处理。

如果是客户端要连接redis,那么会为socket关联连接应答处理器
如果是客户端要写数据到redis,那么会为socket关联命令请求处理器
如果是客户端要从redis读数据,那么会为socket关联命令回复处理器

2)文件事件

当socket变得可读时(比如客户端对redis执行write操作,或者close操作),或者有新的可以应答的sccket出现时(客户端对redis执行connect操作),socket就会产生一个AE_READABLE事件。
当socket变得可写的时候(客户端对redis执行read操作),socket会产生一个AE_WRITABLE事件。
IO多路复用程序可以同时监听AE_REABLE和AE_WRITABLE两种事件,要是一个socket同时产生了AE_READABLE和AE_WRITABLE两种事件,那么文件事件分派器优先处理AE_REABLE事件,然后才是AE_WRITABLE事件。

3)客户端与redis通信的一次流程

在redis启动初始化的时候,redis会将连接应答处理器跟AE_READABLE事件关联起来,接着如果一个客户端跟redis发起连接,此时会产生一个AE_READABLE事件,然后由连接应答处理器来处理跟客户端建立连接,创建客户端对应的socket,同时将这个socket的AE_READABLE事件跟命令请求处理器关联起来。
当客户端向redis发起请求的时候(不管是读请求还是写请求,都一样),首先就会在socket产生一个AE_READABLE事件,然后由对应的命令请求处理器来处理。这个命令请求处理器就会从socket中读取请求相关数据,然后进行执行和处理。
接着redis这边准备好了给客户端的响应数据之后,就会将socket的AE_WRITABLE事件跟命令回复处理器关联起来,当客户端这边准备好读取响应数据时,就会在socket上产生一个AE_WRITABLE事件,会由对应的命令回复处理器来处理,就是将准备好的响应数据写入socket,供客户端来读取。
命令回复处理器写完之后,就会删除这个socket的AE_WRITABLE事件和命令回复处理器的关联关系。

在这里插入图片描述

2.3 为啥redis单线程模型也能效率这么高?

1)纯内存操作

2)核心是基于非阻塞的IO多路复用机制

3)单线程反而避免了多线程的频繁上下文切换问题

3. redis的数据类型

(1)string
这是最基本的类型了,没啥可说的,就是普通的set和get,做简单的kv缓存
(2)hash
这个是类似map的一种结构,这个一般就是可以将结构化的数据,比如一个对象(前提是这个对象没嵌套其他的对象)给缓存在redis里,然后每次读写缓存的时候,可以就操作hash里的某个字段。
key=150

value={
“id”: 150,
“name”: “zhangsan”,
“age”: 20
}

hash类的数据结构,主要是用来存放一些对象,把一些简单的对象给缓存起来,后续操作的时候,你可以直接仅仅修改这个对象中的某个字段的值

value={
“id”: 150,
“name”: “zhangsan”,
“age”: 21
}

(3)list

有序列表,这个是可以玩儿出很多花样的
微博,某个大v的粉丝,就可以以list的格式放在redis里去缓存
key=某大v value=[zhangsan, lisi, wangwu]
比如可以通过list存储一些列表型的数据结构,类似粉丝列表了、文章的评论列表了之类的东西
比如可以通过lrange命令,就是从某个元素开始读取多少个元素,可以基于list实现分页查询,这个很棒的一个功能,基于redis实现简单的高性能分页,可以做类似微博那种下拉不断分页的东西,性能高,就一页一页走
比如可以搞个简单的消息队列,从list头怼进去,从list尾巴那里弄出来

(4)set

无序集合,自动去重
直接基于set将系统里需要去重的数据扔进去,自动就给去重了,如果你需要对一些数据进行快速的全局去重,你当然也可以基于jvm内存里的HashSet进行去重,但是如果你的某个系统部署在多台机器上呢?
得基于redis进行全局的set去重
可以基于set玩儿交集、并集、差集的操作,比如交集吧,可以把两个人的粉丝列表整一个交集,看看俩人的共同好友是谁?对吧
把两个大v的粉丝都放在两个set中,对两个set做交集

(5)sorted set
排序的set,去重但是可以排序,写进去的时候给一个分数,自动根据分数排序,这个可以玩儿很多的花样,最大的特点是有个分数可以自定义排序规则
比如说你要是想根据时间对数据排序,那么可以写入进去的时候用某个时间作为分数,人家自动给你按照时间排序了
排行榜:将每个用户以及其对应的什么分数写入进去,zadd board score username,接着zrevrange board 0 99,就可以获取排名前100的用户;zrank board username,可以看到用户在排行榜里的排名

zadd board 85 zhangsan
zadd board 72 wangwu
zadd board 96 lisi
zadd board 62 zhaoliu

96 lisi
85 zhangsan
72 wangwu
62 zhaoliu

获取排名前3的用户

96 lisi
85 zhangsan
72 wangwu

4. redis过期策略

4.1 redis是怎么对过期key进行删除的?

答案是:定期删除+惰性删除

定期删除,指的是redis默认是每隔100ms就随机抽取一些设置了过期时间的key,检查其是否过期,如果过期就删除。假设redis里放了10万个key,都设置了过期时间,你每隔几百毫秒,就检查10万个key,那redis基本上就死了,cpu负载会很高的,消耗在你的检查过期key上了。注意,这里可不是每隔100ms就遍历所有的设置过期时间的key,那样就是一场性能上的灾难。实际上redis是每隔100ms随机抽取一些key来检查和删除的。
但是问题是,定期删除可能会导致很多过期key到了时间并没有被删除掉,那咋整呢?所以就是惰性删除了。这就是说,在你获取某个key的时候,redis会检查一下 ,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除,不会给你返回任何东西。
并不是key到时间就被删除掉,而是你查询这个key的时候,redis再懒惰的检查一下
通过上述两种手段结合起来,保证过期的key一定会被干掉。
很简单,就是说,你的过期key,靠定期删除没有被删除掉,还停留在内存里,占用着你的内存呢,除非你的系统去查一下那个key,才会被redis给删除掉。

4.2 如果定期删除漏掉了很多过期key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期key堆积在内存里,导致redis内存块耗尽了,咋整?

答案是:走内存淘汰机制。

内存淘汰

如果redis的内存占用过多的时候,此时会进行内存淘汰,有如下一些策略:

4.2.1 noeviction

当内存不足以容纳新写入数据时,新写入操作会报错,这个一般没人用吧,实在是太恶心了

4.2.2 allkeys-lru

当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key(这个是最常用的)

4.2.3 allkeys-random

当内存不足以容纳新写入数据时,在键空间中,随机移除某个key,这个一般没人用吧,为啥要随机,肯定是把最近最少使用的key给干掉啊

4.2.4 volatile-lru

当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key(这个一般不太合适)

4.2.5 volatile-random

当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key

4.2.6 volatile-ttl

当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除

4.3 写一个LRU算法?

public class LRUCache<K, V> extends LinkedHashMap<K, V> {
    
    private final int CACHE_SIZE;
    // 这里就是传递进来最多能缓存多少数据
    public LRUCache(int cacheSize) {
        super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true); // 这块就是设置一个hashmap的初始大小,同时最后一个true指的是让linkedhashmap按照访问顺序来进行排序,最近访问的放在头,最老访问的就在尾
        CACHE_SIZE = cacheSize;
    }

    @Override
    protected boolean removeEldestEntry(Map.Entry eldest) {
        return size() > CACHE_SIZE; // 这个意思就是说当map中的数据量大于指定的缓存个数的时候,就自动删除最老的数据
    }
}

我给你看上面的代码,是告诉你最起码你也得写出来上面那种代码,不求自己纯手工从底层开始打造出自己的LRU,但是起码知道如何利用已有的jdk数据结构实现一个java版的LRU

5.如何保证redis的高并发与高可用

5.0 概要

5.0.1、redis高并发跟整个系统的高并发之间的关系

redis,你要搞高并发的话,不可避免,要把底层的缓存搞得很好
mysql,高并发,做到了,那么也是通过一系列复杂的分库分表,订单系统,事务要求的,QPS到几万,比较高了
要做一些电商的商品详情页,真正的超高并发,QPS上十万,甚至是百万,一秒钟百万的请求量
光是redis是不够的,但是redis是整个大型的缓存架构中,支撑高并发的架构里面,非常重要的一个环节
首先,你的底层的缓存中间件,缓存系统,必须能够支撑的起我们说的那种高并发,其次,再经过良好的整体的缓存架构的设计(多级缓存架构、热点缓存),支撑真正的上十万,甚至上百万的高并发

5.0.2、redis不能支撑高并发的瓶颈在哪里?

单机

5.0.3、如果redis要支撑超过10万+的并发,那应该怎么做?

单机的redis几乎不太可能说QPS超过10万+,除非一些特殊情况,比如你的机器性能特别好,配置特别高,物理机,维护做的特别好,而且你的整体的操作不是太复杂
单机在几万
读写分离,一般来说,对缓存,一般都是用来支撑读高并发的,写的请求是比较少的,可能写请求也就一秒钟几千,一两千
大量的请求都是读,一秒钟二十万次读

主从架构 -> 读写分离 -> 支撑10万+读QPS的架构

5.0.4、接下来要讲解的一个topic

redis replication

redis主从架构 -> 读写分离架构 -> 可支持水平扩展的读高并发架构

5.1 redis主从配置实现读写分离,支撑高并发

5.1.1 主从复制配置原理

在这里插入图片描述

5.1.2、redis replication的核心机制

(1)redis采用异步方式复制数据到slave节点,不过redis 2.8开始,slave node会周期性地确认自己每次复制的数据量
(2)一个master node是可以配置多个slave node的
(3)slave node也可以连接其他的slave node
(4)slave node做复制的时候,是不会block master node的正常工作的
(5)slave node在做复制的时候,也不会block对自己的查询操作,它会用旧的数据集来提供服务; 但是复制完成的时候,需要删除旧数据集,加载新数据集,这个时候就会暂停对外服务了
(6)slave node主要用来进行横向扩容,做读写分离,扩容的slave node可以提高读的吞吐量

5.1.3、master持久化对于主从架构的安全保障的意义

如果采用了主从架构,那么建议必须开启master node的持久化!
不建议用slave node作为master node的数据热备,因为那样的话,如果你关掉master的持久化,可能在master宕机重启的时候数据是空的,然后可能一经过复制,salve node数据也丢了
master -> RDB和AOF都关闭了 -> 全部在内存中
master宕机,重启,是没有本地数据可以恢复的,然后就会直接认为自己IDE数据是空的
master就会将空的数据集同步到slave上去,所有slave的数据全部清空

100%的数据丢失

5.1.4、主从架构的核心原理

当启动一个slave node的时候,它会发送一个PSYNC命令给master node
如果这是slave node重新连接master node,那么master node仅仅会复制给slave部分缺少的数据; 否则如果是slave node第一次连接master node,那么会触发一次full resynchronization
开始full resynchronization的时候,master会启动一个后台线程,开始生成一份RDB快照文件,同时还会将从客户端收到的所有写命令缓存在内存中。RDB文件生成完毕之后,master会将这个RDB发送给slave,slave会先写入本地磁盘,然后再从本地磁盘加载到内存中。然后master会将内存中缓存的写命令发送给slave,slave也会同步这些数据。
slave node如果跟master node有网络故障,断开了连接,会自动重连。master如果发现有多个slave node都来重新连接,仅仅会启动一个rdb save操作,用一份数据服务所有slave node。

在这里插入图片描述

5.1.5、主从复制的断点续传

从redis 2.8开始,就支持主从复制的断点续传,如果主从复制过程中,网络连接断掉了,那么可以接着上次复制的地方,继续复制下去,而不是从头开始复制一份
master node会在内存中常见一个backlog,master和slave都会保存一个replica offset还有一个master id,offset就是保存在backlog中的。如果master和slave网络连接断掉了,slave会让master从上次的replica offset开始继续复制
但是如果没有找到对应的offset,那么就会执行一次resynchronization

5.1.5、无磁盘化复制

master在内存中直接创建rdb,然后发送给slave,不会在自己本地落地磁盘了
repl-diskless-sync
repl-diskless-sync-delay,等待一定时长再开始复制,因为要等更多slave重新连接过来

5.1.6、过期key处理

slave不会过期key,只会等待master过期key。如果master过期了一个key,或者通过LRU淘汰了一个key,那么会模拟一条del命令发送给slave。

5.1.7、复制的完整流程

(1)slave node启动,仅仅保存master node的信息,包括master node的host和ip,但是复制流程没开始master host和ip是从哪儿来的,redis.conf里面的slaveof配置的

(2)slave node内部有个定时任务,每秒检查是否有新的master node要连接和复制,如果发现,就跟master node建立socket网络连接

(3)slave node发送ping命令给master node

(4)口令认证,如果master设置了requirepass,那么salve node必须发送masterauth的口令过去进行认证

(5)master node第一次执行全量复制,将所有数据发给slave node

(6)master node后续持续将写命令,异步复制给slave node

在这里插入图片描述

5.1.8、数据同步相关的核心机制

指的就是第一次slave连接msater的时候,执行的全量复制,那个过程里面你的一些细节的机制

(1)master和slave都会维护一个offset ,master会在自身不断累加offset,slave也会在自身不断累加offset,slave每秒都会上报自己的offset给master,同时master也会保存每个slave的offset,这个倒不是说特定就用在全量复制的,主要是master和slave都要知道各自的数据的offset,才能知道互相之间的数据不一致的情况
(2)backlog
master node有一个backlog,默认是1MB大小
master node给slave node复制数据时,也会将数据在backlog中同步写一份
backlog主要是用来做全量复制中断候的增量复制的

5.1.9、 master run id

info server,可以看到master run id
如果根据host+ip定位master node,是不靠谱的,如果master node重启或者数据出现了变化,那么slave node应该根据不同的run id区分,run id不同就做全量复制
如果需要不更改run id重启redis,可以使用redis-cli debug reload命令

在这里插入图片描述

5.1.10、 psync

从节点使用psync从master node进行复制,psync runid offset
master node会根据自身的情况返回响应信息,可能是FULLRESYNC runid offset触发全量复制,可能是CONTINUE触发增量复制

5.1.11、全量复制

(1)master执行bgsave,在本地生成一份rdb快照文件
(2)master node将rdb快照文件发送给salve node,如果rdb复制时间超过60秒(repl-timeout),那么slave node就会认为复制失败,可以适当调节大这个参数
(3)对于千兆网卡的机器,一般每秒传输100MB,6G文件,很可能超过60s
(4)master node在生成rdb时,会将所有新的写命令缓存在内存中,在salve node保存了rdb之后,再将新的写命令复制给salve node
(5)client-output-buffer-limit slave 256MB 64MB 60,如果在复制期间,内存缓冲区持续消耗超过64MB,或者一次性超过256MB,那么停止复制,复制失败
(6)slave node接收到rdb之后,清空自己的旧数据,然后重新加载rdb到自己的内存中,同时基于旧的数据版本对外提供服务
(7)如果slave node开启了AOF,那么会立即执行BGREWRITEAOF,重写AOF

rdb生成、rdb通过网络拷贝、slave旧数据的清理、slave aof rewrite,很耗费时间,如果复制的数据量在4G~6G之间,那么很可能全量复制时间消耗到1分半到2分钟

5.1.12、增量复制

(1)如果全量复制过程中,master-slave网络连接断掉,那么salve重新连接master时,会触发增量复制
(2)master直接从自己的backlog中获取部分丢失的数据,发送给slave node,默认backlog就是1MB
(3)msater就是根据slave发送的psync中的offset来从backlog中获取数据的

5.1.13、heartbeat

主从节点互相都会发送heartbeat信息,master默认每隔10秒发送一次heartbeat,salve node每隔1秒发送一个heartbeat

5.1.14、异步复制

master每次接收到写命令之后,现在内部写入数据,然后异步发送给slave node

5.2 如何做到redis 99.99%高可用

5.2.1、什么是99.99%高可用?

架构上,高可用性,99.99%的高可用性,365天,在365天 * 99.99%的时间内,你的系统都是可以哗哗对外提供服务的,那就是高可用性,99.99%

5.2.2、redis不可用是什么?单实例不可用?主从架构不可用?不可用的后果是什么?

在这里插入图片描述

5.2.3、redis怎么才能做到高可用?

在这里插入图片描述

5.2.4、哨兵的介绍
1 sentinal,中文名是哨兵。哨兵是redis集群架构中非常重要的一个组件,主要功能如下

(1)集群监控,负责监控redis master和slave进程是否正常工作

(2)消息通知,如果某个redis实例有故障,那么哨兵负责发送消息作为报警通知给管理员

(3)故障转移,如果master node挂掉了,会自动转移到slave node上

(4)配置中心,如果故障转移发生了,通知client客户端新的master地址

2 哨兵本身也是分布式的,作为一个哨兵集群去运行,互相协同工作

(1)故障转移时,判断一个master node是宕机了,需要大部分的哨兵都同意才行,涉及到了分布式选举的问题
(2)即使部分哨兵节点挂掉了,哨兵集群还是能正常工作的,因为如果一个作为高可用机制重要组成部分的故障转移系统本身是单点的,那就很坑爹了

目前采用的是sentinal 2版本,sentinal 2相对于sentinal 1来说,重写了很多代码,主要是让故障转移的机制和算法变得更加健壮和简单

3、哨兵的核心知识

(1)哨兵至少需要3个实例,来保证自己的健壮性
(2)哨兵 + redis主从的部署架构,是不会保证数据零丢失的,只能保证redis集群的高可用性
(3)对于哨兵 + redis主从这种复杂的部署架构,尽量在测试环境和生产环境,都进行充足的测试和演练

4、为什么redis哨兵集群只有2个节点无法正常工作?

哨兵集群必须部署2个以上节点

如果哨兵集群仅仅部署了个2个哨兵实例,quorum=1

±—+ ±—+
| M1 |---------| R1 |
| S1 | | S2 |
±—+ ±—+

Configuration: quorum = 1

master宕机,s1和s2中只要有1个哨兵认为master宕机就可以还行切换,同时s1和s2中会选举出一个哨兵来执行故障转移

同时这个时候,需要majority,也就是大多数哨兵都是运行的,2个哨兵的majority就是2(2的majority=2,3的majority=2,5的majority=3,4的majority=2),2个哨兵都运行着,就可以允许执行故障转移

但是如果整个M1和S1运行的机器宕机了,那么哨兵只有1个了,此时就没有majority来允许执行故障转移,虽然另外一台机器还有一个R1,但是故障转移不会执行

5、经典的3节点哨兵集群
   +----+
   | M1 |
   | S1 |
   +----+
      |

±—+ | ±—+
| R2 |----±—| R3 |
| S2 | | S3 |
±—+ ±—+

Configuration: quorum = 2,majority

如果M1所在机器宕机了,那么三个哨兵还剩下2个,S2和S3可以一致认为master宕机,然后选举出一个来执行故障转移

同时3个哨兵的majority是2,所以还剩下的2个哨兵运行着,就可以允许执行故障转移

5.3 redis 数据丢失问题

1、两种数据丢失的情况

主备切换的过程,可能会导致数据丢失

(1)异步复制导致的数据丢失

因为master -> slave的复制是异步的,所以可能有部分数据还没复制到slave,master就宕机了,此时这些部分数据就丢失了

在这里插入图片描述

(2)脑裂导致的数据丢失

脑裂,也就是说,某个master所在机器突然脱离了正常的网络,跟其他slave机器不能连接,但是实际上master还运行着
此时哨兵可能就会认为master宕机了,然后开启选举,将其他slave切换成了master
这个时候,集群里就会有两个master,也就是所谓的脑裂
此时虽然某个slave被切换成了master,但是可能client还没来得及切换到新的master,还继续写向旧master的数据可能也丢失了
因此旧master再次恢复的时候,会被作为一个slave挂到新的master上去,自己的数据会清空,重新从新的master复制数据

在这里插入图片描述


2、解决异步复制和脑裂导致的数据丢失

min-slaves-to-write 1
min-slaves-max-lag 10

要求至少有1个slave,数据复制和同步的延迟不能超过10秒
如果说一旦所有的slave,数据复制和同步的延迟都超过了10秒钟,那么这个时候,master就不会再接收任何请求了

上面两个配置可以减少异步复制和脑裂导致的数据丢失

(1)减少异步复制的数据丢失

有了min-slaves-max-lag这个配置,就可以确保说,一旦slave复制数据和ack延时太长,就认为可能master宕机后损失的数据太多了,那么就拒绝写请求,这样可以把master宕机时由于部分数据未同步到slave导致的数据丢失降低的可控范围内

在这里插入图片描述

(2)减少脑裂的数据丢失

如果一个master出现了脑裂,跟其他slave丢了连接,那么上面两个配置可以确保说,如果不能继续给指定数量的slave发送数据,而且slave超过10秒没有给自己ack消息,那么就直接拒绝客户端的写请求
这样脑裂后的旧master就不会接受client的新数据,也就避免了数据丢失
上面的配置就确保了,如果跟任何一个slave丢了连接,在10秒后发现没有slave给自己ack,那么就拒绝新的写请求
因此在脑裂场景下,最多就丢失10秒的数据

在这里插入图片描述

5.4 其他概念

1、sdown和odown转换机制

sdown和odown两种失败状态

sdown是主观宕机,就一个哨兵如果自己觉得一个master宕机了,那么就是主观宕机
odown是客观宕机,如果quorum数量的哨兵都觉得一个master宕机了,那么就是客观宕机
sdown达成的条件很简单,如果一个哨兵ping一个master,超过了is-master-down-after-milliseconds指定的毫秒数之后,就主观认为master宕机
sdown到odown转换的条件很简单,如果一个哨兵在指定时间内,收到了quorum指定数量的其他哨兵也认为那个master是sdown了,那么就认为是odown了,客观认为master宕机

2、哨兵集群的自动发现机制

哨兵互相之间的发现,是通过redis的pub/sub系统实现的,每个哨兵都会往__sentinel__:hello这个channel里发送一个消息,这时候所有其他哨兵都可以消费到这个消息,并感知到其他的哨兵的存在
每隔两秒钟,每个哨兵都会往自己监控的某个master+slaves对应的__sentinel__:hello channel里发送一个消息,内容是自己的host、ip和runid还有对这个master的监控配置
每个哨兵也会去监听自己监控的每个master+slaves对应的__sentinel__:hello channel,然后去感知到同样在监听这个master+slaves的其他哨兵的存在
每个哨兵还会跟其他哨兵交换对master的监控配置,互相进行监控配置的同步

3、slave配置的自动纠正

哨兵会负责自动纠正slave的一些配置,比如slave如果要成为潜在的master候选人,哨兵会确保slave在复制现有master的数据; 如果slave连接到了一个错误的master上,比如故障转移之后,那么哨兵会确保它们连接到正确的master上

4、slave->master选举算法

如果一个master被认为odown了,而且majority哨兵都允许了主备切换,那么某个哨兵就会执行主备切换操作,此时首先要选举一个slave来

会考虑slave的一些信息

(1)跟master断开连接的时长
(2)slave优先级
(3)复制offset
(4)run id

如果一个slave跟master断开连接已经超过了down-after-milliseconds的10倍,外加master宕机的时长,那么slave就被认为不适合选举为master

(down-after-milliseconds * 10) + milliseconds_since_master_is_in_SDOWN_state

接下来会对slave进行排序

(1)按照slave优先级进行排序,slave priority越低,优先级就越高
(2)如果slave priority相同,那么看replica offset,哪个slave复制了越多的数据,offset越靠后,优先级就越高
(3)如果上面两个条件都相同,那么选择一个run id比较小的那个slave

5、quorum和majority

每次一个哨兵要做主备切换,首先需要quorum数量的哨兵认为odown,然后选举出一个哨兵来做切换,这个哨兵还得得到majority哨兵的授权,才能正式执行切换
如果quorum < majority,比如5个哨兵,majority就是3,quorum设置为2,那么就3个哨兵授权就可以执行切换
但是如果quorum >= majority,那么必须quorum数量的哨兵都授权,比如5个哨兵,quorum是5,那么必须5个哨兵都同意授权,才能执行切换

6、configuration epoch

哨兵会对一套redis master+slave进行监控,有相应的监控的配置
执行切换的那个哨兵,会从要切换到的新master(salve->master)那里得到一个configuration epoch,这就是一个version号,每次切换的version号都必须是唯一的
如果第一个选举出的哨兵切换失败了,那么其他哨兵,会等待failover-timeout时间,然后接替继续执行切换,此时会重新获取一个新的configuration epoch,作为新的version号

7、configuraiton传播

哨兵完成切换之后,会在自己本地更新生成最新的master配置,然后同步给其他的哨兵,就是通过之前说的pub/sub消息机制
这里之前的version号就很重要了,因为各种消息都是通过一个channel去发布和监听的,所以一个哨兵完成一次新的切换之后,新的master配置是跟着新的version号的
其他的哨兵都是根据版本号的大小来更新自己的master配置的

5.5 Redis挂掉之后数据如何恢复

实际上就是Redis的持久化方式,优缺点以及实现原理

1.redis持久化的意义

数据备份和故障恢复

在这里插入图片描述

2. RDB和AOF两种持久化机制的介绍

RDB持久化机制,对redis中的数据执行周期性的持久化
AOF机制对每条写入命令作为日志,以append-only的模式写入一个日志文件中,在redis重启的时候,可以通过回放AOF日志中的写入指令来重新构建整个数据集
如果我们想要redis仅仅作为纯内存的缓存来用,那么可以禁止RDB和AOF所有的持久化机制
通过RDB或AOF,都可以将redis内存中的数据给持久化到磁盘上面来,然后可以将这些数据备份到别的地方去,比如说阿里云,云服务
如果redis挂了,服务器上的内存和磁盘上的数据都丢了,可以从云服务上拷贝回来之前的数据,放到指定的目录中,然后重新启动redis,redis就会自动根据持久化数据文件中的数据,去恢复内存中的数据,继续对外提供服务
如果同时使用RDB和AOF两种持久化机制,那么在redis重启的时候,会使用AOF来重新构建数据,因为AOF中的数据更加完整

在这里插入图片描述

3. RDB持久化机制的优点

(1)RDB会生成多个数据文件,每个数据文件都代表了某一个时刻中redis的数据,这种多个数据文件的方式,非常适合做冷备,可以将这种完整的数据文件发送到一些远程的安全存储上去,比如说Amazon的S3云服务上去,在国内可以是阿里云的ODPS分布式存储上,以预定好的备份策略来定期备份redis中的数据
(2)RDB对redis对外提供的读写服务,影响非常小,可以让redis保持高性能,因为redis主进程只需要fork一个子进程,让子进程执行磁盘IO操作来进行RDB持久化即可
(3)相对于AOF持久化机制来说,直接基于RDB数据文件来重启和恢复redis进程,更加快速

4. RDB持久化机制的缺点

(1)如果想要在redis故障时,尽可能少的丢失数据,那么RDB没有AOF好。一般来说,RDB数据快照文件,都是每隔5分钟,或者更长时间生成一次,这个时候就得接受一旦redis进程宕机,那么会丢失最近5分钟的数据

RDB丢数据问题

(2)RDB每次在fork子进程来执行RDB快照数据文件生成的时候,如果数据文件特别大,可能会导致对客户端提供的服务暂停数毫秒,或者甚至数秒

5. AOF持久化机制的优点

(1)AOF可以更好的保护数据不丢失,一般AOF会每隔1秒,通过一个后台线程执行一次fsync操作,最多丢失1秒钟的数据

(2)AOF日志文件以append-only模式写入,所以没有任何磁盘寻址的开销,写入性能非常高,而且文件不容易破损,即使文件尾部破损,也很容易修复

(3)AOF日志文件即使过大的时候,出现后台重写操作,也不会影响客户端的读写。因为在rewrite log的时候,会对其中的指导进行压缩,创建出一份需要恢复数据的最小日志出来。再创建新日志文件的时候,老的日志文件还是照常写入。当新的merge后的日志文件ready的时候,再交换新老日志文件即可。

AOF rewrite原理

(4)AOF日志文件的命令通过非常可读的方式进行记录,这个特性非常适合做灾难性的误删除的紧急恢复。比如某人不小心用flushall命令清空了所有数据,只要这个时候后台rewrite还没有发生,那么就可以立即拷贝AOF文件,将最后一条flushall命令给删了,然后再将该AOF文件放回去,就可以通过恢复机制,自动恢复所有数据

6. AOF持久化机制的缺点

(1)对于同一份数据来说,AOF日志文件通常比RDB数据快照文件更大

(2)AOF开启后,支持的写QPS会比RDB支持的写QPS低,因为AOF一般会配置成每秒fsync一次日志文件,当然,每秒一次fsync,性能也还是很高的

(3)以前AOF发生过bug,就是通过AOF记录的日志,进行数据恢复的时候,没有恢复一模一样的数据出来。所以说,类似AOF这种较为复杂的基于命令日志/merge/回放的方式,比基于RDB每次持久化一份完整的数据快照文件的方式,更加脆弱一些,容易有bug。不过AOF就是为了避免rewrite过程导致的bug,因此每次rewrite并不是基于旧的指令日志进行merge的,而是基于当时内存中的数据进行指令的重新构建,这样健壮性会好很多。

7. RDB和AOF到底该如何选择

(1)不要仅仅使用RDB,因为那样会导致你丢失很多数据

(2)也不要仅仅使用AOF,因为那样有两个问题,第一,你通过AOF做冷备,没有RDB做冷备,来的恢复速度更快; 第二,RDB每次简单粗暴生成数据快照,更加健壮,可以避免AOF这种复杂的备份和恢复机制的bug

(3)综合使用AOF和RDB两种持久化机制,用AOF来保证数据不丢失,作为数据恢复的第一选择; 用RDB来做不同程度的冷备,在AOF文件都丢失或损坏不可用的时候,还可以使用RDB来进行快速的数据恢复

5.6. Redis cluster

1、单机redis在海量数据面前的瓶颈

在这里插入图片描述

2、怎么才能够突破单机瓶颈,让redis支撑海量数据?

3、redis的集群架构

1. redis cluster

支撑N个redis master node,每个master node都可以挂载多个slave node
读写分离的架构,对于每个master来说,写就写到master,然后读就从mater对应的slave去读
高可用,因为每个master都有salve节点,那么如果mater挂掉,redis cluster这套机制,就会自动将某个slave切换成master
redis cluster(多master + 读写分离 + 高可用)
我们只要基于redis cluster去搭建redis集群即可,不需要手工去搭建replication复制+主从架构+读写分离+哨兵集群+高可用

在这里插入图片描述

(1)自动将数据进行分片,每个master上放一部分数据

(2)提供内置的高可用支持,部分master不可用时,还是可以继续工作的

在redis cluster架构下,每个redis要放开两个端口号,比如一个是6379,另外一个就是加10000的端口号,比如16379
16379端口号是用来进行节点间通信的,也就是cluster bus的东西,集群总线。cluster bus的通信,用来进行故障检测,配置更新,故障转移授权
cluster bus用了另外一种二进制的协议,主要用于节点间进行高效的数据交换,占用更少的网络带宽和处理时间

2. 数据分布的算法

hash算法 -> 一致性hash算法(memcached) -> redis cluster,hash slot算法

2.1 最老土的hash算法和弊端(大量缓存重建)

在这里插入图片描述

2.2. 一致性hash算法(自动缓存迁移)+虚拟节点(自动负载均衡)

在这里插入图片描述

在这里插入图片描述

2.3. redis cluster的hash slot算法

redis cluster有固定的16384个hash slot,对每个key计算CRC16值,然后对16384取模,可以获取key对应的hash slot
redis cluster中每个master都会持有部分slot,比如有3个master,那么可能每个master持有5000多个hash slot
hash slot让node的增加和移除很简单,增加一个master,就将其他master的hash slot移动部分过去,减少一个master,就将它的hash slot移动到其他master上去
移动hash slot的成本是非常低的
客户端的api,可以对指定的数据,让他们走同一个hash slot,通过hash tag来实现

在这里插入图片描述

3. redis cluster VS replication + sentinal

如果你的数据量很少,主要是承载高并发高性能的场景,比如你的缓存一般就几个G,单机足够了
replication,一个mater,多个slave,要几个slave跟你的要求的读吞吐量有关系,然后自己搭建一个sentinal集群,去保证redis主从架构的高可用性,就可以了
redis cluster,主要是针对海量数据+高并发+高可用的场景,海量数据,如果你的数据量很大,那么建议就用redis cluster

4.节点间的内部通信机制

1、基础通信原理

(1)redis cluster节点间采取gossip协议进行通信

跟集中式不同,不是将集群元数据(节点信息,故障,等等)集中存储在某个节点上,而是互相之间不断通信,保持整个集群所有节点的数据是完整的
维护集群的元数据用得,集中式,一种叫做gossip

集中式:好处在于,元数据的更新和读取,时效性非常好,一旦元数据出现了变更,立即就更新到集中式的存储中,其他节点读取的时候立即就可以感知到; 不好在于,所有的元数据的跟新压力全部集中在一个地方,可能会导致元数据的存储有压力
gossip:好处在于,元数据的更新比较分散,不是集中在一个地方,更新请求会陆陆续续,打到所有节点上去更新,有一定的延时,降低了压力; 缺点,元数据更新有延时,可能导致集群的一些操作会有一些滞后
我们刚才做reshard,去做另外一个操作,会发现说,configuration error,达成一致

(2)10000端口

每个节点都有一个专门用于节点间通信的端口,就是自己提供服务的端口号+10000,比如7001,那么用于节点间通信的就是17001端口
每隔节点每隔一段时间都会往另外几个节点发送ping消息,同时其他几点接收到ping之后返回pong

(3)交换的信息

故障信息,节点的增加和移除,hash slot信息,等等

2、gossip协议

gossip协议包含多种消息,包括ping,pong,meet,fail,等等
meet: 某个节点发送meet给新加入的节点,让新节点加入集群中,然后新节点就会开始与其他节点进行通信
redis-trib.rb add-node
其实内部就是发送了一个gossip meet消息,给新加入的节点,通知那个节点去加入我们的集群
ping: 每个节点都会频繁给其他节点发送ping,其中包含自己的状态还有自己维护的集群元数据,互相通过ping交换元数据
每个节点每秒都会频繁发送ping给其他的集群,ping,频繁的互相之间交换数据,互相进行元数据的更新
pong: 返回ping和meet,包含自己的状态和其他信息,也可以用于信息广播和更新
fail: 某个节点判断另一个节点fail之后,就发送fail给其他节点,通知其他节点,指定的节点宕机了

在这里插入图片描述

3、ping消息深入

ping很频繁,而且要携带一些元数据,所以可能会加重网络负担
每个节点每秒会执行10次ping,每次会选择5个最久没有通信的其他节点
当然如果发现某个节点通信延时达到了cluster_node_timeout / 2,那么立即发送ping,避免数据交换延时过长,落后的时间太长了
比如说,两个节点之间都10分钟没有交换数据了,那么整个集群处于严重的元数据不一致的情况,就会有问题
所以cluster_node_timeout可以调节,如果调节比较大,那么会降低发送的频率
每次ping,一个是带上自己节点的信息,还有就是带上1/10其他节点的信息,发送出去,进行数据交换
至少包含3个其他节点的信息,最多包含总节点-2个其他节点的信息

5、面向集群的jedis内部实现原理

开发,jedis,redis的java client客户端,redis cluster,jedis cluster api
jedis cluster api与redis cluster集群交互的一些基本原理

1、基于重定向的客户端

redis-cli -c,自动重定向

(1)请求重定向

客户端可能会挑选任意一个redis实例去发送命令,每个redis实例接收到命令,都会计算key对应的hash slot
如果在本地就在本地处理,否则返回moved给客户端,让客户端进行重定向
cluster keyslot mykey,可以查看一个key对应的hash slot是什么
用redis-cli的时候,可以加入-c参数,支持自动的请求重定向,redis-cli接收到moved之后,会自动重定向到对应的节点执行命令

(2)计算hash slot

计算hash slot的算法,就是根据key计算CRC16值,然后对16384取模,拿到对应的hash slot
用hash tag可以手动指定key对应的slot,同一个hash tag下的key,都会在一个hash slot中,比如set mykey1:{100}和set mykey2:{100}

(3)hash slot查找

节点间通过gossip协议进行数据交换,就知道每个hash slot在哪个节点上

2、smart jedis

(1)什么是smart jedis

基于重定向的客户端,很消耗网络IO,因为大部分情况下,可能都会出现一次请求重定向,才能找到正确的节点
所以大部分的客户端,比如java redis客户端,就是jedis,都是smart的
本地维护一份hashslot -> node的映射表,缓存,大部分情况下,直接走本地缓存就可以找到hashslot -> node,不需要通过节点进行moved重定向

(2)JedisCluster的工作原理

在JedisCluster初始化的时候,就会随机选择一个node,初始化hashslot -> node映射表,同时为每个节点创建一个JedisPool连接池
每次基于JedisCluster执行操作,首先JedisCluster都会在本地计算key的hashslot,然后在本地映射表找到对应的节点
如果那个node正好还是持有那个hashslot,那么就ok; 如果说进行了reshard这样的操作,可能hashslot已经不在那个node上了,就会返回moved
如果JedisCluter API发现对应的节点返回moved,那么利用该节点的元数据,更新本地的hashslot -> node映射表缓存
重复上面几个步骤,直到找到对应的节点,如果重试超过5次,那么就报错,JedisClusterMaxRedirectionException
jedis老版本,可能会出现在集群某个节点故障还没完成自动切换恢复时,频繁更新hash slot,频繁ping节点检查活跃,导致大量网络IO开销
jedis最新版本,对于这些过度的hash slot更新和ping,都进行了优化,避免了类似问题

(3)hashslot迁移和ask重定向

如果hash slot正在迁移,那么会返回ask重定向给jedis
jedis接收到ask重定向之后,会重新定位到目标节点去执行,但是因为ask发生在hash slot迁移过程中,所以JedisCluster API收到ask是不会更新hashslot本地缓存
已经可以确定说,hashslot已经迁移完了,moved是会更新本地hashslot->node映射表缓存的

6、高可用性与主备切换原理

redis cluster的高可用的原理,几乎跟哨兵是类似的

1、判断节点宕机

如果一个节点认为另外一个节点宕机,那么就是pfail,主观宕机
如果多个节点都认为另外一个节点宕机了,那么就是fail,客观宕机,跟哨兵的原理几乎一样,sdown,odown
在cluster-node-timeout内,某个节点一直没有返回pong,那么就被认为pfail
如果一个节点认为某个节点pfail了,那么会在gossip ping消息中,ping给其他节点,如果超过半数的节点都认为pfail了,那么就会变成fail

2、从节点过滤

对宕机的master node,从其所有的slave node中,选择一个切换成master node
检查每个slave node与master node断开连接的时间,如果超过了cluster-node-timeout * cluster-slave-validity-factor,那么就没有资格切换成master
这个也是跟哨兵是一样的,从节点超时过滤的步骤

3、从节点选举

哨兵:对所有从节点进行排序,slave priority,offset,run id
每个从节点,都根据自己对master复制数据的offset,来设置一个选举时间,offset越大(复制数据越多)的从节点,选举时间越靠前,优先进行选举
所有的master node开始slave选举投票,给要进行选举的slave进行投票,如果大部分master node(N/2 + 1)都投票给了某个从节点,那么选举通过,那个从节点可以切换成master
从节点执行主备切换,从节点切换为主节点

4、与哨兵比较

整个流程跟哨兵相比,非常类似,所以说,redis cluster功能强大,直接集成了replication和sentinal的功能
没有办法去给大家深入讲解redis底层的设计的细节,核心原理和设计的细节,那个除非单独开一门课,redis底层原理深度剖析,redis源码
对于咱们这个架构课来说,主要关注的是架构,不是底层的细节,对于架构来说,核心的原理的基本思路,是要梳理清晰的

5.7 如何应对雪崩以及穿透效应

1. 缓存雪崩发生的现象

在这里插入图片描述

2. 缓存雪崩的事前事中事后的解决方案

事前:redis高可用,主从+哨兵,redis cluster,避免全盘崩溃

事中:本地ehcache缓存 + hystrix限流&降级,避免MySQL被打死

事后:redis持久化,快速恢复缓存数据

在这里插入图片描述

3. 缓存穿透的现象

缓存穿透的解决方法

在这里插入图片描述

5.8 缓存与数据库双写数据的一致性问题

最经典的缓存+数据库读写的模式,cache aside pattern

1、Cache Aside Pattern

(1)读的时候,先读缓存,缓存没有的话,那么就读数据库,然后取出数据后放入缓存,同时返回响应
(2)更新的时候,先删除缓存,然后再更新数据库

在这里插入图片描述

2、为什么是删除缓存,而不是更新缓存呢?

问题在于,这个缓存到底会不会被频繁访问到???
举个例子,一个缓存涉及的表的字段,在1分钟内就修改了20次,或者是100次,那么缓存跟新20次,100次; 但是这个缓存在1分钟内就被读取了1次,有大量的冷数据
28法则,黄金法则,20%的数据,占用了80%的访问量
实际上,如果你只是删除缓存的话,那么1分钟内,这个缓存不过就重新计算一次而已,开销大幅度降低
每次数据过来,就只是删除缓存,然后修改数据库,如果这个缓存,在1分钟内只是被访问了1次,那么只有那1次,缓存是要被重新计算的,用缓存才去算缓存
其实删除缓存,而不是更新缓存,就是一个lazy计算的思想,不要每次都重新做复杂的计算,不管它会不会用到,而是让它到需要被使用的时候再重新计算。

3、最初级的缓存不一致问题以及解决方案

问题:

先修改数据库,再删除缓存,如果删除缓存失败了,那么会导致数据库中是新数据,缓存中是旧数据,数据出现不一致

在这里插入图片描述

解决思路

先删除缓存,再修改数据库,如果删除缓存成功了,如果修改数据库失败了,那么数据库中是旧数据,缓存中是空的,那么数据不会不一致,因为读的时候缓存没有,则读数据库中旧数据,然后更新到缓存中

在这里插入图片描述

4、比较复杂的数据不一致问题分析

数据发生了变更,先删除了缓存,然后要去修改数据库,此时还没修改
一个请求过来,去读缓存,发现缓存空了,去查询数据库,查到了修改前的旧数据,放到了缓存中
数据变更的程序完成了数据库的修改
完了,数据库和缓存中的数据不一样了。。。。

在这里插入图片描述

5、为什么上亿流量高并发场景下,缓存会出现这个问题?

只有在对一个数据在并发的进行读写的时候,才可能会出现这种问题
其实如果说你的并发量很低的话,特别是读并发很低,每天访问量就1万次,那么很少的情况下,会出现刚才描述的那种不一致的场景
但是问题是,如果每天的是上亿的流量,每秒并发读是几万,每秒只要有数据更新的请求,就可能会出现上述的数据库+缓存不一致的情况
高并发了以后,问题是很多的

6、数据库与缓存更新与读取操作进行异步串行化

更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个jvm内部的队列中
读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个jvm内部的队列中
一个队列对应一个工作线程
每个工作线程串行拿到对应的操作,然后一条一条的执行
这样的话,一个数据变更的操作,先执行,删除缓存,然后再去更新数据库,但是还没完成更新
此时如果一个读请求过来,读到了空的缓存,那么可以先将缓存更新的请求发送到队列中,此时会在队列中积压,然后同步等待缓存更新完成
这里有一个优化点,一个队列中,其实多个更新缓存请求串在一起是没意义的,因此可以做过滤,如果发现队列中已经有一个更新缓存的请求了,那么就不用再放个更新请求操作进去了,直接等待前面的更新操作请求完成即可
待那个队列对应的工作线程完成了上一个操作的数据库的修改之后,才会去执行下一个操作,也就是缓存更新的操作,此时会从数据库中读取最新的值,然后写入缓存中
如果请求还在等待时间范围内,不断轮询发现可以取到值了,那么就直接返回; 如果请求等待的时间超过一定时长,那么这一次直接从数据库中读取当前的旧值

在这里插入图片描述

7、高并发的场景下,该解决方案要注意的问题

(1)读请求长时阻塞

由于读请求进行了非常轻度的异步化,所以一定要注意读超时的问题,每个读请求必须在超时时间范围内返回
该解决方案,最大的风险点在于说,可能数据更新很频繁,导致队列中积压了大量更新操作在里面,然后读请求会发生大量的超时,最后导致大量的请求直接走数据库
务必通过一些模拟真实的测试,看看更新数据的频繁是怎样的。另外一点,因为一个队列中,可能会积压针对多个数据项的更新操作,因此需要根据自己的业务情况进行测试,可能需要部署多个服务,每个服务分摊一些数据的更新操作
如果一个内存队列里居然会挤压100个商品的库存修改操作,每隔库存修改操作要耗费10ms区完成,那么最后一个商品的读请求,可能等待10 * 100 = 1000ms = 1s后,才能得到数据
这个时候就导致读请求的长时阻塞,一定要做根据实际业务系统的运行情况,去进行一些压力测试,和模拟线上环境,去看看最繁忙的时候,内存队列可能会挤压多少更新操作,可能会导致最后一个更新操作对应的读请求,会hang多少时间,如果读请求在200ms返回,如果你计算过后,哪怕是最繁忙的时候,积压10个更新操作,最多等待200ms,那还可以的
如果一个内存队列可能积压的更新操作特别多,那么你就要加机器,让每个机器上部署的服务实例处理更少的数据,那么每个内存队列中积压的更新操作就会越少,其实根据之前的项目经验,一般来说数据的写频率是很低的,因此实际上正常来说,在队列中积压的更新操作应该是很少的
针对读高并发,读缓存架构的项目,一般写请求相对读来说,是非常非常少的,每秒的QPS能到几百就不错了

一秒,500的写操作,5份,每200ms,就100个写操作
单机器,20个内存队列,每个内存队列,可能就积压5个写操作,每个写操作性能测试后,一般在20ms左右就完成
那么针对每个内存队列中的数据的读请求,也就最多hang一会儿,200ms以内肯定能返回了
写QPS扩大10倍,但是经过刚才的测算,就知道,单机支撑写QPS几百没问题,那么就扩容机器,扩容10倍的机器,10台机器,每个机器20个队列,200个队列
大部分的情况下,应该是这样的,大量的读请求过来,都是直接走缓存取到数据的
少量情况下,可能遇到读跟数据更新冲突的情况,如上所述,那么此时更新操作如果先入队列,之后可能会瞬间来了对这个数据大量的读请求,但是因为做了去重的优化,所以也就一个更新缓存的操作跟在它后面
等数据更新完了,读请求触发的缓存更新操作也完成,然后临时等待的读请求全部可以读到缓存中的数据

(2)读请求并发量过高

这里还必须做好压力测试,确保恰巧碰上上述情况的时候,还有一个风险,就是突然间大量读请求会在几十毫秒的延时hang在服务上,看服务能不能抗的住,需要多少机器才能抗住最大的极限情况的峰值
但是因为并不是所有的数据都在同一时间更新,缓存也不会同一时间失效,所以每次可能也就是少数数据的缓存失效了,然后那些数据对应的读请求过来,并发量应该也不会特别大。按1:99的比例计算读和写的请求,每秒5万的读QPS,可能只有500次更新操作
如果一秒有500的写QPS,那么要测算好,可能写操作影响的数据有500条,这500条数据在缓存中失效后,可能导致多少读请求,发送读请求到库存服务来,要求更新缓存。一般来说,1:1,1:2,1:3,每秒钟有1000个读请求,会hang在库存服务上,每个读请求最多hang多少时间,200ms就会返回
在同一时间最多hang住的可能也就是单机200个读请求,同时hang住。单机hang200个读请求,还是ok的
1:20,每秒更新500条数据,这500秒数据对应的读请求,会有20 * 500 = 1万
1万个读请求全部hang在库存服务上,就死定了

(3)多服务实例部署的请求路由

可能这个服务部署了多个实例,那么必须保证说,执行数据更新操作,以及执行缓存更新操作的请求,都通过nginx服务器路由到相同的服务实例上

在这里插入图片描述

(4)热点商品的路由问题,导致请求的倾斜

万一某个商品的读写请求特别高,全部打到相同的机器的相同的队列里面去了,可能造成某台机器的压力过大。就是说,因为只有在商品数据更新的时候才会清空缓存,然后才会导致读写并发,所以更新频率不是太高的话,这个问题的影响并不是特别大
但是的确可能某些机器的负载会高一些

5.9 redis的并发竞争问题该如何解决

这个也是线上非常常见的一个问题,就是多客户端同时并发写一个key,可能本来应该先到的数据后到了,导致数据版本错了。或者是多客户端同时获取一个key,修改值之后再写回去,只要顺序错了,数据就错了。

在这里插入图片描述

而且redis自己就有天然解决这个问题的CAS类的乐观锁方案

猜你喜欢

转载自blog.csdn.net/lchpersonal521/article/details/84099794