CS229 6.5 Neurons Networks Implements of Sparse Autoencoder

sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoencoder的方法训练出一个隐含层网络所学习到的特征。该网络共有3层,输入层是64个节点,隐含层是25个节点,输出层当然也是64个节点了。

main函数,  分五步走,每个函数的实现细节在下边都列出了。

  1 %%======================================================================
  2 %% STEP 0: Here we provide the relevant parameters values that will
  3 %  allow your sparse autoencoder to get good filters; you do not need to
  4 %  change the parameters below.
  5  
  6 visibleSize = 8*8;   % number of input units
  7 hiddenSize = 25;     % number of hidden units
  8 sparsityParam = 0.01;   % desired average activation of the hidden units.
  9                      % (This was denoted by the Greek alphabet rho,
 10                      % which looks like a lower-case "p",
 11              %  in the lecture notes).
 12 lambda = 0.0001;     % weight decay parameter      
 13 beta = 3;            % weight of sparsity penalty term      
 14  
 15 %%======================================================================
 16 %% STEP 1: Implement sampleIMAGES
 17 %
 18 %  After implementing sampleIMAGES, the display_network command should
 19 %  display a random sample of 200 patches from the dataset
 20 patches = sampleIMAGES;
 21 display_network(patches(:,randi(size(patches,2),200,1)),8);
 22  
 23  
 24 %  Obtain random parameters theta
 25 theta = initializeParameters(hiddenSize, visibleSize);
 26  
 27 %%======================================================================
 28 %% STEP 2: Implement sparseAutoencoderCost
 29 %
 30 %  You can implement all of the components (squared error cost, weight decay term,
 31 %  sparsity penalty) in the cost function at once, but it may be easier to do
 32 %  it step-by-step and run gradient checking (see STEP 3) after each step.  We
 33 %  suggest implementing the sparseAutoencoderCost function using the following steps:
 34 %
 35 %  (a) Implement forward propagation in your neural network, and implement the
 36 %      squared error term of the cost function.  Implement backpropagation to
 37 %      compute the derivatives.   Then (using lambda=beta=0), run Gradient Checking
 38 %      to verify that the calculations corresponding to the squared error cost
 39 %      term are correct.
 40 %
 41 %  (b) Add in the weight decay term (in both the cost function and the derivative
 42 %      calculations), then re-run Gradient Checking to verify correctness.
 43 %
 44 %  (c) Add in the sparsity penalty term, then re-run Gradient Checking to
 45 %      verify correctness.
 46 %
 47 %  Feel free to change the training settings when debugging your
 48 %  code.  (For example, reducing the training set size or
 49 %  number of hidden units may make your code run faster; and setting beta
 50 %  and/or lambda to zero may be helpful for debugging.)  However, in your
 51 %  final submission of the visualized weights, please use parameters we
 52 %  gave in Step 0 above.
 53  
 54 [cost, grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...
 55                                     lambda,sparsityParam, beta, patches);
 56  
 57 %%======================================================================
 58 %% STEP 3: Gradient Checking
 59 %
 60 % Hint: If you are debugging your code, performing gradient checking on smaller models
 61 % and smaller training sets (e.g., using only 10 training examples and 1-2 hidden
 62 % units) may speed things up.
 63  
 64 % First, lets make sure your numerical gradient computation is correct for a
 65 % simple function.  After you have implemented computeNumericalGradient.m,
 66 % run the following:
 67 checkNumericalGradient();
 68  
 69 % Now we can use it to check your cost function and derivative calculations
 70 % for the sparse autoencoder. 
 71 numgrad = computeNumericalGradient( @(x) sparseAutoencoderCost(x, visibleSize, ...
 72                         hiddenSize, lambda,sparsityParam, beta, patches), theta);
 73  
 74 % Use this to visually compare the gradients side by side
 75 disp([numgrad grad]);
 76  
 77 % Compare numerically computed gradients with the ones obtained from backpropagation
 78 diff = norm(numgrad-grad)/norm(numgrad+grad);
 79 disp(diff); % Should be small. In our implementation, these values are
 80             % usually less than 1e-9.
 81             % When you got this working, Congratulations!!!
 82  
 83 %%======================================================================
 84 %% STEP 4: After verifying that your implementation of
 85 %  sparseAutoencoderCost is correct, You can start training your sparse
 86 %  autoencoder with minFunc (L-BFGS).
 87  
 88 %  Randomly initialize the parameters
 89 theta = initializeParameters(hiddenSize, visibleSize);
 90  
 91 %  Use minFunc to minimize the function
 92 addpath minFunc/
 93 options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
 94                           % function. Generally, for minFunc to work, you
 95                           % need a function pointer with two outputs: the
 96                           % function value and the gradient. In our problem,
 97                           % sparseAutoencoderCost.m satisfies this.
 98 options.maxIter = 400;    % Maximum number of iterations of L-BFGS to run
 99 options.display = 'on';
100 [opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p,visibleSize, hiddenSize, ...
101                             lambda, sparsityParam, beta, patches),theta, options);
102 %%======================================================================
103 %% STEP 5: Visualization
104  
105 W1 = reshape(opttheta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
106 display_network(W1', 12);
107  
108 print -djpeg weights.jpg   % save the visualization to a file
109  
110 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应step1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
111 %三个函数(sampleIMAGES)(normalizeData)(initializeParameters)%%%%
112 function patches = sampleIMAGES()
113 load IMAGES;    % 加载初始的10张512*512大图片
114  
115 patchsize = 8;  % 采样大小
116 numpatches = 10000;
117  
118 %  初始化该矩阵为0,该矩阵为 64*10000维每一列为一张图片.
119 patches = zeros(patchsize*patchsize, numpatches);
120    
121 %  IMAGES 为一个包含10 张images的三维数组,IMAGES(:,:,6) 是一个第六张图片的 512x512 的二维数组,
122 %  命令 "imagesc(IMAGES(:,:,6)), colormap gray;" 可以把第六张图可视化.
123 % 这几张图是经过whiteing预处理的?
124 %  IMAGES(21:30,21:30,1) 就是从第一张图采样得到的(21,21) to (30,30) 的小patchs
125  
126 %在每张图片中随机选取1000个patch,共10000个patch
127 for imageNum = 1:10
128     [rowNum colNum] = size(IMAGES(:,:,imageNum));
129     %实现每张图片选取1000个patch
130     for patchNum = 1:1000
131         %得到左上角的两个点
132         xPos = randi([1,rowNum-patchsize+1]);
133         yPos = randi([1, colNum-patchsize+1]);
134         %填充到矩阵里
135         patches(:,(imageNum-1)*1000+patchNum) = ...
136             reshape(IMAGES(xPos:xPos+7,yPos:yPos+7,imageNum),64,1);
137     end
138 end
139 %由于autoencoder的激励函数是sigmod函数,输出值限定在[0,1],故为了达到H W,b(x)= x,x作为输入,
140 %也要限定在0-1之间,故需要进行正则化
141 patches = normalizeData(patches);
142 end
143  
144 % 正则化的函数,不太明白s-sigma法则?
145 function patches = normalizeData(patches)
146 % 减去均值
147 patches = bsxfun(@minus, patches, mean(patches));
148 % s = std(X),此处X是一个矢量,该函数返回标准偏差(注意其分母为n-1,而不是n) 。
149 % 结果s是一个X各样本偏差无偏估计的平方根(X包含独立的、同分布样本)。
150 % 如果X是一个矩阵,该函数返回一个行矢量,它包含了X每列元素的标准偏差。
151 pstd = 3 * std(patches(:));
152 patches = max(min(patches, pstd), -pstd) / pstd;
153 % 重新压缩 从[-1,1] 到 [0.1,0.9]
154 patches = (patches + 1) * 0.4 + 0.1;
155 end
156  
157 %首先初始化参数
158 function theta = initializeParameters(hiddenSize, visibleSize)
159 % Initialize parameters randomly based on layer sizes.
160  % we'll choose weights uniformly from the interval [-r, r]
161 r  = sqrt(6) / sqrt(hiddenSize+visibleSize+1);
162 %rand(a,b)产生均匀分布的随机矩阵维度为a*b,元素取值范围0.01.0163 W1 = rand(hiddenSize, visibleSize) * 2 * r - r;
164 %rand(a,b)*2*r即取值范围为(0-2r), rand(a,b)*2*r -r即取值范围为(-r - r)
165 W2 = rand(visibleSize, hiddenSize) * 2 * r - r;
166 b1 = zeros(hiddenSize, 1); %连接到hidden unit的偏置单元
167 b2 = zeros(visibleSize, 1); %链接到output layer的偏置单元
168 %  将矩阵合并为一个向量
169 theta = [W1(:) ; W2(:) ; b1(:) ; b2(:)];
170 %初始化参数结束
171 end
172  
173  
174  
175 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应step 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
176 %%%%%返回稀疏损失函数的值与梯度值%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
177 function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...
178                                         lambda, sparsityParam, beta, data)
179 % visibleSize: 输入层单元数
180 % hiddenSize: 隐藏单元数
181 % lambda: 正则项
182 % sparsityParam: (p)指定的平均激活度p
183 % beta: 稀疏权重项B
184 % data: 64x10000 的矩阵为training data,data(:,i)  是第i个训练样例.  
185 % 把参数拼接为一个向量,因为采用L-BFGS优化,L-BFGS要求的就是向量.
186 % 将长向量转换成每一层的权值矩阵和偏置向量值
187 % theta向量的的 1->hiddenSize*visibleSize,W1共hiddenSize*visibleSize 个元素,重新作为矩阵
188 W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
189  
190 %类似以上一直往后放
191 W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
192 b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
193 b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);
194  
195 % 参数对应的梯度矩阵 ;
196 cost = 0;
197 W1grad = zeros(size(W1));
198 W2grad = zeros(size(W2));
199 b1grad = zeros(size(b1));
200 b2grad = zeros(size(b2));
201  
202 Jcost = 0;  %直接误差
203 Jweight = 0;%权值惩罚
204 Jsparse = 0;%稀疏性惩罚
205 [n m] = size(data); %m为样本的个数,n为样本的特征数
206  
207 %前向算法计算各神经网络节点的线性组合值和active值
208 %W1为 hiddenSize*visibleSize的矩阵
209 %data为 visibleSize* trainexampleNum的矩阵
210 %remat(b1,1,m)把向量b1复制扩展为hiddenSize*m列
211 % 根据公式 Z^(l) = z^(l-1)*W^(l-1)+b^(l-1)
212 %z2保存的是10000个样本下隐藏层的输入,为hiddenSize*m维的矩阵,每一列代表一次输入
213 z2= W1*data + remat(b1,1,m);%第二层的输入
214 a2 = sigmoid(z2); %对z2取sigmod 即得到a2,即隐藏层的输出
215 z3 = W2*a2+repmat(b2,1,m); %output layer 的输入
216 a3 = sigmoid(z3); %output 层的输出
217  
218 % 计算预测产生的误差
219 %对应J(W,b), 外边的sum是对所有样本求和,里边的sum是对输出层的所有分量求和
220 Jcost = (0.5/m)*sum(sum((a3-data).^2));
221 %计算权值惩罚项 正则化项,并没有带正则项参数
222 Jweight = (1/2)*(sum(sum(W1.^2))+sum(sum(W2.^2)));
223 %计算稀疏性规则项 sum(matrix,2)是进行按行求和运算,即所有样本在隐层的输出累加求均值
224 % rho为一个hiddenSize*1 维的向量
225  
226 rho = (1/m).*sum(a2,2);%求出隐含层输出aj的平均值向量 rho为hiddenSize维的
227 %求稀疏项的损失
228 Jsparse = sum(sparsityParam.*log(sparsityParam./rho)+(1-sparsityParam).*log((1-sparsityParam)./(1-rho)));
229 %损失函数的总表达式 损失项 + 正则化项 + 稀疏项
230 cost = Jcost + lambda*Jweight + beta*Jsparse;
231 %计算l = 3 即 output-layer层的误差dleta3,因为在autoencoder中输入等于输出h(W,b)=x
232 delta3 = -(data-a3).*sigmoidInv(z3);
233 %因为加入了稀疏规则项,所以计算偏导时需要引入该项,sterm为稀疏项,为hiddenSize维的向量
234 sterm = beta*(-sparsityParam./rho+(1-sparsityParam)./(1-rho))
235 % W2 为64*25的矩阵,d3为第三层的输出为64*10000的矩阵,每一列为每个样本x^(i)的输出,W2'为W2的转置
236 % repmat(sterm,1,m)会把函数复制扩展为m列的矩阵,每一列都为sterm向量。
237 % d2为hiddenSize*10000的矩阵
238 delta2 = (W2'*delta3+repmat(sterm,1,m)).*sigmoidInv(z2);
239  
240 %计算W1grad
241 % data'为10000*64的矩阵 d2*data' 位25*64的矩阵
242 W1grad = W1grad+delta2*data';
243 W1grad = (1/m)*W1grad+lambda*W1;
244  
245 %计算W2grad 
246 W2grad = W2grad+delta3*a2';
247 W2grad = (1/m).*W2grad+lambda*W2;
248  
249 %计算b1grad
250 b1grad = b1grad+sum(delta2,2);
251 b1grad = (1/m)*b1grad;%注意b的偏导是一个向量,所以这里应该把每一行的值累加起来
252  
253 %计算b2grad
254 b2grad = b2grad+sum(delta3,2);
255 b2grad = (1/m)*b2grad;
256 %计算完成重新转为向量
257 grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];
258 end
259  
260 %-------------------------------------------------------------------
261 % Here's an implementation of the sigmoid function, which you may find useful
262 % in your computation of the costs and the gradients.  This inputs a (row or
263 % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)).
264  
265 function sigm = sigmoid(x)
266     sigm = 1 ./ (1 + exp(-x));
267 end
268  
269 %sigmoid函数的导函数
270 function sigmInv = sigmoidInv(x)
271     sigmInv = sigmoid(x).*(1-sigmoid(x));
272 end
273  
274 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应step 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
275 %三个函数:(checkNumericalGradient)(simpleQuadraticFunction)(computeNumericalGradient)
276 function [] = checkNumericalGradient()
277 x = [4; 10];
278 %当前简单函数实际的值与实际的导函数
279 [value, grad] = simpleQuadraticFunction(x);
280 % 在点 x 处计算简单函数的梯度,("@simpleQuadraticFunction" denotes a pointer to a function.)
281 numgrad = computeNumericalGradient(@simpleQuadraticFunction, x);
282 % disp()等价于 print()
283 disp([numgrad grad]);
284 fprintf('The above two columns you get should be very similar.\n(Left-Your Numerical Gradient, Right-Analytical Gradient)\n\n');
285 % norm 等价于 sqrt(sum(X.^2)); 如果实现正确,设置 EPSILON = 0.0001,误差应该为2.1452e-12
286 diff = norm(numgrad-grad)/norm(numgrad+grad);
287 disp(diff);
288 fprintf('Norm of the difference between numerical and analytical gradient (should be < 1e-9)\n\n');
289 end
290  
291  %这个简单函数用来检验写的computeNumericalGradient函数的正确性
292 function [value,grad] = simpleQuadraticFunction(x)
293 % this function accepts a 2D vector as input.
294 % Its outputs are:
295 %   value: h(x1, x2) = x1^2 + 3*x1*x2
296 %   grad: A 2x1 vector that gives the partial derivatives of h with respect to x1 and x2
297 % Note that when we pass @simpleQuadraticFunction(x) to computeNumericalGradients, we're assuming
298 % that computeNumericalGradients will use only the first returned value of this function.
299 value = x(1)^2 + 3*x(1)*x(2);
300 grad = zeros(2, 1);
301 grad(1)  = 2*x(1) + 3*x(2);
302 grad(2)  = 3*x(1);
303 end
304  
305 %梯度检验的函数
306 function numgrad = computeNumericalGradient(J, theta)
307 % theta: 参数,向量或者实数均可
308 % J: 输出值为实数的函数. 调用y = J(theta)将会返回函数在theta处的值
309  
310 % numgrad初始化为0,与theta维度相同
311 numgrad = zeros(size(theta));
312 EPSILON = 1e-4;
313 % theta是一个行向量,size(theta,1)是求行数
314 n = size(theta,1);
315 %产生一个维度为n的单位矩阵
316 E = eye(n);
317 for i = 1:n
318     % (n,:)代表第n行,所有的列
319     % (:,n)代表所有行,第n列
320     % 由于E是单位矩阵,所以只有第i行第i列的元素变为EPSILON
321     delta = E(:,i)*EPSILON;
322     %向量第i维度的值
323     numgrad(i) = (J(theta+delta)-J(theta-delta))/(EPSILON*2.0);
324 end
325 %% ---------------------------------------------------------------
326  
327 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应step 5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
328 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%关于函数的展示%%%%%%%%%%%%%%%%%%%%%%%%%%%
329 function [h, array] = display_network(A, opt_normalize, opt_graycolor, cols, opt_colmajor)
330 % This function visualizes filters in matrix A. Each column of A is a
331 % filter. We will reshape each column into a square image and visualizes
332 % on each cell of the visualization panel.
333 % All other parameters are optional, usually you do not need to worry
334 % about it.
335 % opt_normalize: whether we need to normalize the filter so that all of
336 % them can have similar contrast. Default value is true.
337 % opt_graycolor: whether we use gray as the heat map. Default is true.
338 % cols: how many columns are there in the display. Default value is the
339 % squareroot of the number of columns in A.
340 % opt_colmajor: you can switch convention to row major for A. In that
341 % case, each row of A is a filter. Default value is false.
342 warning off all
343  
344 if ~exist('opt_normalize', 'var') || isempty(opt_normalize)
345     opt_normalize= true;
346 end
347  
348 if ~exist('opt_graycolor', 'var') || isempty(opt_graycolor)
349     opt_graycolor= true;
350 end
351  
352 if ~exist('opt_colmajor', 'var') || isempty(opt_colmajor)
353     opt_colmajor = false;
354 end
355  
356 % rescale
357 A = A - mean(A(:));
358  
359 if opt_graycolor, colormap(gray); end
360  
361 % compute rows, cols
362 [L M]=size(A);
363 sz=sqrt(L);
364 buf=1;
365 if ~exist('cols', 'var')
366     if floor(sqrt(M))^2 ~= M
367         n=ceil(sqrt(M));
368         while mod(M, n)~=0 && n<1.2*sqrt(M), n=n+1; end
369         m=ceil(M/n);
370     else
371         n=sqrt(M);
372         m=n;
373     end
374 else
375     n = cols;
376     m = ceil(M/n);
377 end
378  
379 array=-ones(buf+m*(sz+buf),buf+n*(sz+buf));
380  
381 if ~opt_graycolor
382     array = 0.1.* array;
383 end
384  
385  
386 if ~opt_colmajor
387     k=1;
388     for i=1:m
389         for j=1:n
390             if k>M,
391                 continue;
392             end
393             clim=max(abs(A(:,k)));
394             if opt_normalize
395                 array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;
396             else
397                 array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/max(abs(A(:)));
398             end
399             k=k+1;
400         end
401     end
402 else
403     k=1;
404     for j=1:n
405         for i=1:m
406             if k>M,
407                 continue;
408             end
409             clim=max(abs(A(:,k)));
410             if opt_normalize
411                 array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;
412             else
413                 array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz);
414             end
415             k=k+1;
416         end
417     end
418 end
419  
420 if opt_graycolor
421     h=imagesc(array,'EraseMode','none',[-1 1]);
422 else
423     h=imagesc(array,'EraseMode','none',[-1 1]);
424 end
425 axis image off
426  
427 drawnow;
428  
429 warning on all

猜你喜欢

转载自www.cnblogs.com/alan-blog-TsingHua/p/10023893.html
今日推荐