STM32的IAP

最终要实现的是:
单片机每次上电会先运行Boot程序,检查标志位如果标志位为FLAG_TO_APP则直接跳转到App程序运行,如果标志位为FLAG_TO_BOOT,则运行Boot程序准备升级。在运行App程序时,当接收到升级的指令后会在FLASH中的某处空间写下升级的标志位FLAG_TO_BOOT,并且加载Boot程序,Boot程序会接受新的程序文件并且存储在相应的FLASH空间里,完成升级后会在标志位的空间写下FLAG_TO_APP,并且运行新的程序。

-------------------------------------------------------
1. 什么是IAP?
IAP的知识网上的各种资料也说的比较明白,在此简单介绍一下。IAP( In Application Programming)即在线应用编程,也就是用户可以使用自己的程序对单片机的User Flash的某一区域(一般为存放自己程序的区域)进行烧写。在真正的工作中产品发布后,可以很方便的使用预留的通信接口(串口、USB、网口、蓝牙等)来完成程序的升级,从而避免了把机器拆开使用下载器烧写程序。要实现IAP功能一般要设计两部分代码,一是BootLoader程序,这部分程序存储在FLASH的某一位置,主要用来引导、升级App程序;二是App程序,这个程序才是实现产品的功能程序。通过BootLoader来完成对App程序的更新升级,这就是IAP功能。
2. STM32的启动模式
很多初学者对于STM32的启动并不是很了解,这在《STM32的参考手册》以及网上各种资料里也有介绍,下面再简单介绍一下:
STM32有三种启动方式,主要是通过管脚BOOT0和BOOT1的连接方式来控制的,如下图所示,因为我们要让程序从主存储器启动,因而在硬件                设计时要选择第一种方式把BOOT0接到GND,BOOT1任意,可以拉高也可以拉低。

note: STM32上电启动并不是直接进入main函数,而是先进行系统初始化,这个函数的调用是在启动文件startup_stm32f10x_hd.s(因为我的单片机是STM32F103RCT6,大容量芯片所以是这个文件)中执行复位中断Reset_Handler时被调用的,执行完复位中断才会进入main函数。
3.  STM32 FLASH的分布
STM32每种型号单片机的FLASH大小及地址分配在芯片手册里都有介绍,我使用的是STM32F103RCT6的型号其FLASH为256K属于大容量产品其        
FLASH的分布如下图:主存储块的地址是从0x08000000到0x0803FFFF共256K


我们在设计程序时把FLASH分成3部分,第一部分从0x08000000到0x0800FFFF共64K来存放BootLoader程序,第二部分为0x08010000        
到0x0802FFFF共128K来存放App程序,第三部分从0x08030000开始到0x803FFFF共64K来存放程序运行的标志位和其他,如下所示:

4. STM32程序的运行过程
STM32的程序运行过程在很多资料里也都有介绍,因为STM32F103的单片机是基于Cortex-M3核的,它的内部主要是通过中断向量表来响应各种中断,内部闪存的起始地址是0x08000000,中断向量表的起始地址是0x8000004,程序启动后,将首先从“中断向量表”取出复位中断向量执行复位中断程序完成启动,当中断来临时STM32 的内部硬件机制亦会自动将 PC 指针定位到“中断向量表”处,并根据中断源取出对应的中断向量执行相应的中断服务程序。

如上图所示STM32的正常启动流程是:
a. STM32上电后会从 0x8000004 处取出复位中断向量的地址,并跳转执行复位中断服务程序,如标号1所示;
b. 复位中断复位程序执行完成之后就会跳转到我们的main函数如标号2所示;
c. main函数一般为死循环,当其收到某一中断请求之后STM32会强制把PC指针指向中断向量表,如标号3所示;
d. 查询中断向量表,根据中断源来跳转到相应的中断服务程序中执行响应的操作;如标号4、5所示;
e. 执行完中断服务程序之后会再回到main函数中,如标号6所示。
以上是STM32的正常运行过程,而当加入IAP程序之后,运行流程就如下所示:

加入IAP后程序运行如下:
a. STM32复位之后还是从0x8000004处获取中断向量表的地址,并跳转执行复位中断服务程序,如标号1所示;
b. 执行完复位中断服务程序之后回调转到IAP的main函数中,如标号2所示;
c. IAP的过程就是通过某种选定的通信方式(如串口)来接收程序文件,并且存储在指定的FLASH空间里,随后会加载新的程序,而新程序        
的复位中断向量起始地址为0X08000004+N+M,取出新程序的复位中断向量的地址,并跳转执行新程序的复位中断服务程序,随后跳转
至新程序的 main 函数,如标号3、4所示;
d. 此时在STM32的FLASH里面会有两个中断向量表,在新程序 main 函数执行的过程中,当中断来临时PC指针仍会回跳转至地址为
0x8000004 中断向量表处,而并不是新程序的中断向量表,这是由STM32的硬件机制决定的,如标号5所示;
e. 查询中断向量表,根据中断源来跳转到新的中断服务程序中执行响应的操作,如标号6所示;
f. 执行完中断服务程序之后会再回到main函数中,如标号7、8所示。
note:
由上可知新的程序在FLASH中必须放在IAP程序之后的某个地址里,这里我的程序中设置的是0x08010000 即偏移量为0x10000,而且新程序
的中断向量表也要做相应的偏移,偏移量也为0x10000 (地址的设置可以通过编译软件来实现,下文会有介绍)。

5. BootLoader程序的编写
   BootLoader程序主要的功能是接收新的程序并把它存储在FLASH的特定位置,然后加载新的程序运行。单片机每次上电都会先读取一个
标志位,根据此标志位来决定是运行APP程序还是来运行自己来升级。
flag = STMFLASH_ReadHalfWord(FLASH_ADDR_UPDATE_FLAG); (FLASH_ADDR_UPDATE_FLAG 是0x08030000的地址)
当flag = FLAG_TO_APP 则加载App程序,否则执行升级程序。
在我的程序中通过串口来完成程序bin文件的传输,为了通信安全制定通信协议,串口接收分为两种:
a. 指令的接收,长度为16个字节,协议示例为
test[16] = {55, aa, 01, 指令长度,命令码,00,00,...00, 和校验位}
和校验位 = 0 - 前15字节的和,
b. 程序文件的接收,每包数据为(2048 + 6)个字节,示例为:
test[2054] = {55, aa, 01, 包号,命令码,数据文件2048字节,和校验位}
       之所以设置以上的通信协议就是为了保证数据传输的正确性。

猜你喜欢

转载自blog.csdn.net/VICTORY2017/article/details/83269170