STM32实现IAP功能:

最近因项目需求要实现STM32的在线升级即IAP功能,先将这几天的学习体会和IAP的具体实现总结出来,分享给大家,希望对同样实现IAP的童鞋有所帮助,文中最后会上传名为STM32_Update.zip的压缩文件里面包含了STM32_App、STM32_MyBoot_V1.0和升级软件STM32_UpdateSoftware的源码文件供大家参考。所有程序都经过测试,可以直接在原子哥的开发板上跑,上位机的升级软件大家可以直接打开
STM32_Update\STM32_UpdateSoftware\Release\STM32_UpdateSoftware.exe来升级,如果需要查看源码请用VS2010打开工程文件。

最终要实现的是:
单片机每次上电会先运行Boot程序,检查标志位如果标志位为FLAG_TO_APP则直接跳转到App程序运行,如果标志位为FLAG_TO_BOOT,则运行Boot程序准备升级。在运行App程序时,当接收到升级的指令后会在FLASH中的某处空间写下升级的标志位FLAG_TO_BOOT,并且加载Boot程序,Boot程序会接受新的程序文件并且存储在相应的FLASH空间里,完成升级后会在标志位的空间写下FLAG_TO_APP,并且运行新的程序。

帖子包含如下几个方面:
1. 什么是IAP?
2. STM32的启动模式?
3. STM32的FLASH分布?
4. STM32程序的运行过程?
5. BootLoader程序的编写(如何实现程序的动态加载)?
6. App程序的编写?
7. bin文件的转换?

8. 上位机串口升级软件的简介

  1. 什么是IAP?
    IAP的知识网上的各种资料也说的比较明白,在此简单介绍一下。IAP( In Application Programming)即在线应用编程,也就是用户可以使用自己的程序对单片机的User Flash的某一区域(一般为存放自己程序的区域)进行烧写。在真正的工作中产品发布后,可以很方便的使用预留的通信接口(串口、USB、网口、蓝牙等)来完成程序的升级,从而避免了把机器拆开使用下载器烧写程序。要实现IAP功能一般要设计两部分代码,一是BootLoader程序,这部分程序存储在FLASH的某一位置,主要用来引导、升级App程序;二是App程序,这个程序才是实现产品的功能程序。通过BootLoader来完成对App程序的更新升级,这就是IAP功能。
  2. STM32的启动模式
    很多初学者对于STM32的启动并不是很了解,这在《STM32的参考手册》以及网上各种资料里也有介绍,下面再简单介绍一下:
    STM32有三种启动方式,主要是通过管脚BOOT0和BOOT1的连接方式来控制的,如下图所示,因为我们要让程序从主存储器启动,因而在硬件 设计时要选择第一种方式把BOOT0接到GND,BOOT1任意,可以拉高也可以拉低。
    这里写图片描述

note: STM32上电启动并不是直接进入main函数,而是先进行系统初始化,这个函数的调用是在启动文件startup_stm32f10x_hd.s(因为我的单片机是STM32F103RCT6,大容量芯片所以是这个文件)中执行复位中断Reset_Handler时被调用的,执行完复位中断才会进入main函数。
3. STM32 FLASH的分布
STM32每种型号单片机的FLASH大小及地址分配在芯片手册里都有介绍,我使用的是STM32F103RCT6的型号其FLASH为256K属于大容量产品其
FLASH的分布如下图:主存储块的地址是从0x08000000到0x0803FFFF共256K
这里写图片描述

我们在设计程序时把FLASH分成3部分,第一部分从0x08000000到0x0800FFFF共64K来存放BootLoader程序,第二部分为0x08010000
到0x0802FFFF共128K来存放App程序,第三部分从0x08030000开始到0x803FFFF共64K来存放程序运行的标志位和其他,如下所示:

这里写图片描述

  1. STM32程序的运行过程
    STM32的程序运行过程在很多资料里也都有介绍,因为STM32F103的单片机是基于Cortex-M3核的,它的内部主要是通过中断向量表来响应各种中断,内部闪存的起始地址是0x08000000,中断向量表的起始地址是0x8000004,程序启动后,将首先从“中断向量表”取出复位中断向量执行复位中断程序完成启动,当中断来临时STM32 的内部硬件机制亦会自动将 PC 指针定位到“中断向量表”处,并根据中断源取出对应的中断向量执行相应的中断服务程序。

这里写图片描述

如上图所示STM32的正常启动流程是:
a. STM32上电后会从 0x8000004 处取出复位中断向量的地址,并跳转执行复位中断服务程序,如标号1所示;
b. 复位中断复位程序执行完成之后就会跳转到我们的main函数如标号2所示;
c. main函数一般为死循环,当其收到某一中断请求之后STM32会强制把PC指针指向中断向量表,如标号3所示;
d. 查询中断向量表,根据中断源来跳转到相应的中断服务程序中执行响应的操作;如标号4、5所示;
e. 执行完中断服务程序之后会再回到main函数中,如标号6所示。
以上是STM32的正常运行过程,而当加入IAP程序之后,运行流程就如下所示:

加入IAP后程序运行如下:
a. STM32复位之后还是从0x8000004处获取中断向量表的地址,并跳转执行复位中断服务程序,如标号1所示;
b. 执行完复位中断服务程序之后回调转到IAP的main函数中,如标号2所示;
c. IAP的过程就是通过某种选定的通信方式(如串口)来接收程序文件,并且存储在指定的FLASH空间里,随后会加载新的程序,而新程序
的复位中断向量起始地址为0X08000004+N+M,取出新程序的复位中断向量的地址,并跳转执行新程序的复位中断服务程序,随后跳转
至新程序的 main 函数,如标号3、4所示;
d. 此时在STM32的FLASH里面会有两个中断向量表,在新程序 main 函数执行的过程中,当中断来临时PC指针仍会回跳转至地址为
0x8000004 中断向量表处,而并不是新程序的中断向量表,这是由STM32的硬件机制决定的,如标号5所示;
e. 查询中断向量表,根据中断源来跳转到新的中断服务程序中执行响应的操作,如标号6所示;
f. 执行完中断服务程序之后会再回到main函数中,如标号7、8所示。
note:
由上可知新的程序在FLASH中必须放在IAP程序之后的某个地址里,这里我的程序中设置的是0x08010000 即偏移量为0x10000,而且新程序
的中断向量表也要做相应的偏移,偏移量也为0x10000 (地址的设置可以通过编译软件来实现,下文会有介绍)。

  1. BootLoader程序的编写
    BootLoader程序主要的功能是接收新的程序并把它存储在FLASH的特定位置,然后加载新的程序运行。单片机每次上电都会先读取一个
    标志位,根据此标志位来决定是运行APP程序还是来运行自己来升级。
    flag = STMFLASH_ReadHalfWord(FLASH_ADDR_UPDATE_FLAG); (FLASH_ADDR_UPDATE_FLAG 是0x08030000的地址)
    当flag = FLAG_TO_APP 则加载App程序,否则执行升级程序。
    在我的程序中通过串口来完成程序bin文件的传输,为了通信安全制定通信协议,串口接收分为两种:
    a. 指令的接收,长度为16个字节,协议示例为
    test[16] = {55, aa, 01, 指令长度,命令码,00,00,…00, 和校验位}
    和校验位 = 0 - 前15字节的和,
    b. 程序文件的接收,每包数据为(2048 + 6)个字节,示例为:
    test[2054] = {55, aa, 01, 包号,命令码,数据文件2048字节,和校验位}
    之所以设置以上的通信协议就是为了保证数据传输的正确性。
    Boot程序的主函数
    Boot程序的main函数里主要是读取标志位flag根据flag的值来决定是加载现有的App程序还是运行自身的升级程序,在自身运行时会定时给上位机软件发送BOOT准备完成的指令,告诉上位机我准备好了,并运行ReceiveUsartData();根据串口中断里的标志信息来完成对指令和程序文件的接收。
int main(void)
{ 
  int flag = 3;
  int nCount = 0;
  delay_init();  
  uart_init(115200);
  LED_Init();
  TIM3_Init(99, 719);  //10ms定时
  flag = STMFLASH_ReadHalfWord(FLASH_ADDR_UPDATE_FLAG);  //读取标志位
  while(1)
  {        
    //FLASH_EraseAllPages();  //仅在擦除所有FLASH时打开
    if(flag == FLAG_TO_APP)
    {
        Iap_Load_App(FLASH_ADDR_APP);
    }        
    else
    {      
        ReceiveUsartData();   //串口接收
        if(Flag10MS == 1)  
        {          
            Flag10MS = 0; 
            nCount++;
            if(nCount == 10)  //100ms
            {
                nCount = 0;
                USARTxSendRespondToServer(USART1, SERIAL_CODE_STM32_UPDATE_PREPAR_BOOT_OK); //不能发送过快否则会有脏数据
                LED0 = !LED0;
            }                            
        }
    }
  }    
}

串口初始化程序
使用STM32的USART1,设置波特率为115200、8位数据长度、1个停止位、无校验位,
具体实现见源码的uart_init()函数。
串口中断服务程序 void USART1_IRQHandler(void)
在串口中断服务程序中主要是接收上位机升级软件发过来的数据,当UpdateFlag置1时为接收bin程序文件的数据,当UsartRxCodeCount
的计数等于每包传输的总字节数USART_RECEIVE_CODE_DATA_SIZE时,置接收完成标志位UsartReceiveFlag = 1并且置NextPageFlag = 1
跳出中断去ReceiveUsartData()处理,把接收到的数据存储在FLASH的指定位置,不断循环直到文件全部接收完成。升级指令的接收方法
相同,详见代码。
(note:在中断服务函数里,尽量不要做其他的操作,只设定标志位,具体的操作去外面的函数执行。)
重新加载代码的程序
为了实现Boot和App程序之间跳转,则必须在升级完成之后重新加载新的程序文件,其中涉及到在C语言里内嵌汇编语言,代码如下:

void MSR_MSP(u32 addr) 
{
    //asm("MSR MSP, r0");  //使用Keil内嵌汇编时使用这两句
    //asm("BX r14");
  __ASM("msr msp, r0");  //set Main Stack value 将主堆栈地址保存到MSP寄存器(R13)中
  __ASM("bx lr"); //跳转到lr中存放的地址处。bx是强制跳转指令 lr是连接寄存器,是STM32单片机的R14
}

typedef  void (*IapFun)(void);                                //定义一个函数类型的参数
IapFun JumpToApp; 

//跳转到应用程序 AppAddr:用户代码起始地址.
void Iap_Load_App(u32 AppAddr)
{
        if(((*(vu32*)AppAddr)&0x2FFE0000)==0x20000000)        //检查栈顶地址是否合法.
        { 
                JumpToApp = (IapFun)*(vu32*)(AppAddr+4); //用户代码区第二个字为程序开始地址(新程序复位地址)                
                MSR_MSP(*(vu32*)AppAddr);                 //初始化APP堆栈指针(用户代码区的第一个字用于存放栈顶地址)
                JumpToApp();        //设置PC指针为新程序复位中断函数的地址,往下执行
        }
}

首先 if((((vu32)AppAddr)&0x2FFE0000)==0x20000000) 的作用是检查栈顶地址是否合法,((vu32)AppAddr)是去除用户程序首地
址里面的数据,而这个数据就是用户代码的堆栈地址,而堆栈地址指向RAM,RAM的起始地址是0x20000000,因此可以用上免得语句判断用
户的堆栈地址是否合法。
当判断栈顶地址合法之后取出新的复位中断函数的地址即(vu32*)(AppAddr+4),并把它赋值给函数指针JumpToApp,然后调用
MSR_MSP()函数把主堆栈指针赋值给MSP寄存器,最后调用JumpToApp();来执行新的程序。
(这里涉及到函数指针的知识,一定要理解函数名本身就是该函数的入口地址,它的实质是一个地址。)
上面涉及到嵌入汇编的知识,可能讲解不是很透彻感兴趣的朋友可以参考《Cortex-M3 权威指南》获取更多的了解。
中断向量表的设置和起始地址的设置(IAR软件)
在IAR软件中设置程序的中断向量表和程序的入口地址的方法如下:
1. 打开工程,在工程名STM32_BOOT_v1.0上右键–Options

  1. 选择Linker–Edit.

  2. 设置中断向量表的地址Vector Table 和 Memory Regions的值

  3. 这里写图片描述

这里写图片描述
6. App程序的编写
App程序相对简单,它主要包含两部分,一是程序要实现的主体功能(比如点亮LED),主要是你想让App做什么就实现什么;二是通过串口来查询升级指令,当收到升级的命令后要在FLASH_ADDR_UPDATE_FLAG 的地址处写入FLAG_TO_BOOT的标志位,并且调用Iap_Load_App()l加载运行BootLoader的程序来完成升级,详细请看源码。
对于App程序的要设置其中断向量表的偏移通过语句 SCB->VTOR = FLASH_BASE | FLASH_VTOR_OFFSET;来实现,FLASH_VTOR_OFFSET这个变量在程序中是 #define FLASH_VTOR_OFFSET ((uint32_t)0x10000) 因为我们的App程序存储地址是0x08010000相对于0x08000000来说偏移量即为0x10000,而且在程序编译时要设置Vector Table 和 Memory Regions的值为0x08010000
这里写图片描述

这里写图片描述
7. bin文件的转换
升级程序时编译出的程序文件最好选用bin格式的文件,因为bin文件比hex文件要小的多从而占用的FLASH更小,这是比较主观的优点,使用IAR软件编译时可以通过对软件的设置来输出bin格式的可执行文件,设置如下:
a. 打开工程的Options选项卡选择选择Output Converter
这里写图片描述

b. 在Output format选项中选择 binary格式,同时把Override default输出文件的后缀改为.bin,这样在相应的工程目录下(我的是 
   STM32_App\Project\EWARM5\Debug\Exe) 路径下就可以找到编译输出的bin格式的可执行文件了。

8. 上位机升级软件的简介
我的上位机升级软件是使用C++写的,具体编码不做介绍了,想了解的朋友可以参考源码。对话框界面如下:
首先设置端口号和波特率,然后连接串口,连接成功之后,点击“选择要升级的文件”来实现升级。

升级完成之后会提示“升级完成”。

Stm32 官方iap:
(扩展-IAP主要用于产品出厂后应用程序的更新作用,考虑到出厂时要先烧写IAP 再烧写APP应用程序要烧写2次增加工人劳动力基础上写了“STM32 IAP+APP ==>双剑合一”链接稍后发)
一、在进入主题之前我们先了解一些必要的基础知识—-stm32系列芯片的种类和型号:
startup_stm32f10x_cl.s 互联型的器件,STM32F105xx,STM32F107xx
startup_stm32f10x_hd.s 大容量的STM32F101xx,STM32F102xx,STM32F103xx
startup_stm32f10x_hd_vl.s 大容量的STM32F100xx
startup_stm32f10x_ld.s 小容量的STM32F101xx,STM32F102xx,STM32F103xx
startup_stm32f10x_ld_vl.s 小容量的STM32F100xx
startup_stm32f10x_md.s 中容量的STM32F101xx,STM32F102xx,STM32F103xx
startup_stm32f10x_md_vl.s 中容量的STM32F100xx (我项目中用的是此款芯片 stm32f100CB)
startup_stm32f10x_xl.s FLASH在512K到1024K字节的STM32F101xx,STM32F102xx,STM32F103xx
(例如:像stm32f103re 这个型号的 芯片flash是512k 的, 启动文件用startup_stm32f10x_xl.s 或者startup_stm32f10x_hd.s 都可以;)

cl:互联型产品,stm32f105/107系列
vl:超值型产品,stm32f100系列
xl:超高密度产品,stm32f101/103系列
ld:低密度产品,FLASH小于64K
md:中等密度产品,FLASH=64 or 128
hd:高密度产品,FLASH大于128

二、在拿到ST公司官方的IAP 程序后 我们要思考几点:
1.ST 官方IAP是什么针对什么芯片型号的,我们要用的又是什么芯片型号;
2.我们要用官方IAP适合我们芯片的程序升级使用,要在原有的基础上做那些改变;
(我的资源里有官方IAP源码:http://download.csdn.net/detail/yx_l128125/6445811)

初略看了一下IAP源码后,现在我们可以回答一下上面的2个问题了:
1.官网刚下载的IAP针对的是stm32f103c8芯片的,所以他的启动代码文件选择的是 startup_stm32f10x_md.s,而我的芯片是stm32f100cb,所以我的启动代码文件选择的是 startup_stm32f10x_md_lv.s
这里写图片描述

这里写图片描述

2 .第二个问题就是今天我们要做详细分析才能回答的问题了;
(1).知道了IAP官方源码的芯片和我们要用芯片的差异,首先我们要在源码的基础上做芯片级的改动;
A.首先改变编译器keil的芯片型号上我们要改成我们的芯片类型—STM32F100CB;
B.在keil的options for targer 选项C/C++/PREPROMCESSOR symbols的Define栏里定义,把有关STM32F10X_MD的宏定义改成:STM32F10X_MD_VL
也可以在STM32F10X.H里用宏定义
/* Uncomment the line below according to the target STM32 device used in your
application
*/

#if !defined (STM32F10X_LD) && !defined (STM32F10X_LD_VL) && !defined (STM32F10X_MD) && !defined (STM32F10X_MD_VL) && !defined (STM32F10X_HD) && !defined (STM32F10X_HD_VL) && !defined (STM32F10X_XL) && !defined (STM32F10X_CL) 
  /* #define STM32F10X_LD */    /*!< STM32F10X_LD: STM32 Low density devices */
  /* #define STM32F10X_LD_VL */ /*!< STM32F10X_LD_VL: STM32 Low density Value Line devices */  
  /* #define STM32F10X_MD  */  /*!< STM32F10X_MD: STM32 Medium density devices */
   #define STM32F10X_MD_VL     /*!< STM32F10X_MD_VL: STM32 Medium density Value Line devices */  
  /* #define STM32F10X_HD */    /*!< STM32F10X_HD: STM32 High density devices */
  /* #define STM32F10X_HD_VL */ /*!< STM32F10X_HD_VL: STM32 High density value line devices */  
  /* #define STM32F10X_XL */    /*!< STM32F10X_XL: STM32 XL-density devices */
  /* #define STM32F10X_CL */    /*!< STM32F10X_CL: STM32 Connectivity line devices */
#endif

上面代码说的是如果没有定义 STM32F10X_MD_VL, 则宏定义 STM32F10X_MD_VL
C.外部时钟问价在stm32f10x.h  依据实际修改,原文是 说如果没有宏定义外部时钟HES_VALUE的值,但是宏定义了stm32f10x_cl 则外部时钟设置为25MHZ, 否则外部时钟都设置为8MHZ;  我用的外部晶振是8MHZ的所以不必修改这部分代码;
#if !defined  HSE_VALUE
 #ifdef STM32F10X_CL   
  #define HSE_VALUE    ((uint32_t)25000000) // Value of the External oscillator in Hz 
 #else 
  #define HSE_VALUE    ((uint32_t)8000000) //Value of the External oscillator in Hz  #endif /* STM32F10X_CL */#endif /* HSE_VALUE */

D.做系统主频时钟的更改
system_stm32f10x.c的系统主频率,依实际情况修改 ;我用的芯片主频时钟是24MHZ;

#if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
/* #define SYSCLK_FREQ_HSE    HSE_VALUE */
 #define SYSCLK_FREQ_24MHz  24000000
#else
/* #define SYSCLK_FREQ_HSE    HSE_VALUE */
 #define SYSCLK_FREQ_24MHz  24000000 
/* #define SYSCLK_FREQ_36MHz  36000000 */
/* #define SYSCLK_FREQ_48MHz  48000000 */
/* #define SYSCLK_FREQ_56MHz  56000000 */
/*#define SYSCLK_FREQ_72MHz  72000000*/ 
#endif

E.下面是关键部分操作了,在说这部分操作前我们先来说一下内存映射:
下图在stm32f100芯片手册的29页,我们只截取关键部分
这里写图片描述
从上图我们看出几个关键部分:
1.内部flash 是从0x0800 0000开始 到0x0801 FFFF 结束, 0x0801FFFF-0x0800 0000= 0x20000 =128k 128也就是flash的大小;
2.SRAM的开始地址是 0x2000 0000 ;
我们要把我们的在线升级程序IAP放到FLASH里以0x0800 0000 开始的位置, 应用程序放APP放到以0x08003000开始的位置,中断向量表也放在0x0800 3000开始的位置;如图
这里写图片描述

所以我们需要先查看一下misc.h文件中的中断向量表的初始位置宏定义为 NVIC_VectTab_Flash 0x0800 0000
那么要就要设置编译器keil 中的 options for target 的target选项中的 IROM1地址 为0x0800 0000 大小为 0x20000即128K;
IRAM1地址为0x2000 0000 大小为0x2000;
(提示:这一项IROM1 地址 即为当前程序下载到flash的地址的起始位置)
下面我们来分析一下修改后的IAP代码:

int main(void)
{
    //Flash 解锁
    FLASH_Unlock();

    //配置PA15管脚
    KEY_Configuration() ;
    //配置串口1
    IAP_Init();
    //PA15是否为低电平
    if (GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_15)  == 0x00)
    {

        //执行IAP驱动程序更新Flash程序

        SerialPutString("\r\n======================================================================");
        SerialPutString("\r\n=              (C) COPYRIGHT 2011 Lierda                             =");
        SerialPutString("\r\n=                                                                    =");
        SerialPutString("\r\n=     In-Application Programming Application  (Version 1.0.0)        =");
        SerialPutString("\r\n=                                                                    =");
        SerialPutString("\r\n=                                   By wuguoyan                      =");
        SerialPutString("\r\n======================================================================");
        SerialPutString("\r\n\r\n");
        Main_Menu ();
    }
    //否则执行用户程序
    else
    {
        //判断用处是否已经下载了用户程序,因为正常情况下此地址是栈地址
        //若没有这一句话,即使没有下载程序也会进入而导致跑飞。
        if (((*(__IO uint32_t*)ApplicationAddress) & 0x2FFE0000 ) == 0x20000000)
        {
            SerialPutString("Execute user Program\r\n\n");
            //跳转至用户代码
            JumpAddress = *(__IO uint32_t*) (ApplicationAddress + 4);
            Jump_To_Application = (pFunction) JumpAddress;

            //初始化用户程序的堆栈指针
            __set_MSP(*(__IO uint32_t*) ApplicationAddress);
            Jump_To_Application();
        }
        else
        {
            SerialPutString("no user Program\r\n\n");
        }
    }

这里重点说一下几句经典且非常重要的代码:
第一句: if ((((__IO uint32_t)ApplicationAddress) & 0x2FFE0000 ) == 0x20000000) //判断栈定地址值是否在0x2000 0000 - 0x 2000 2000之间
怎么理解呢? (1),在程序里#define ApplicationAddress 0x8003000 ,(__IO uint32_t)ApplicationAddress) 即取0x8003000开始到0x8003003 的4个字节的值, 因为我们的应用程序APP中设置把 中断向量表 放置在0x08003000 开始的位置;而中断向量表里第一个放的就是栈顶地址的值
也就是说,这句话即通过判断栈顶地址值是否正确(是否在0x2000 0000 - 0x 2000 2000之间) 来判断是否应用程序已经下载了,因为应用程序的启动文件刚开始就去初始化化栈空间,如果栈顶值对了,说应用程已经下载了启动文件的初始化也执行了;
这里写图片描述

第二句: JumpAddress = (__IO uint32_t) (ApplicationAddress + 4); [ common.c文件第18行定义了: pFunction Jump_To_Application;]

ApplicationAddress + 4 即为0x0800 3004 ,里面放的是中断向量表的第二项“复位地址” JumpAddress = (__IO uint32_t) (ApplicationAddress + 4); 之后此时JumpAddress
第三句: Jump_To_Application = (pFunction) JumpAddress;
startup_stm32f10x_md_lv. 文件中别名 typedef void (*pFunction)(void); 这个看上去有点奇怪;正常第一个整型变量 typedef int a; 就是给整型定义一个别名 a

 void (*pFunction)(void);   是声明一个函数指针,加上一个typedef 之后  pFunction只不过是类型 void (*)(void) 的一个别名;例如:
pFunction   a1,a2,a3;

void  fun(void)
{
    ......
}

a1 = fun;

所以,Jump_To_Application = (pFunction) JumpAddress; 此时Jump_To_Application指向了复位函数所在的地址;
第四 、五句: __set_MSP((__IO uint32_t) ApplicationAddress); \设置主函数栈指针
Jump_To_Application(); \执行复位函数
我们看一下启动文件startup_stm32f10x_md_vl。s 中的启动代码,更容易理解

这里写图片描述

移植后的IAP代码在我的资源(如果是stm32f100cb的芯片可以直接用):http://download.csdn.net/detail/yx_l128125/6475219
三、我们来简单看下启动文件中的启动代码,分析一下这更有利于我们对IAP的理解: (下面这篇文章写的非常好,有木有!)
下文来自于:http://blog.sina.com.cn/s/blog_69bcf45201019djx.html
解析 STM32 的启动过程
解析STM32的启动过程
当前的嵌入式应用程序开发过程里,并且C语言成为了绝大部分场合的最佳选择。如此一来main函数似乎成为了理所当然的起点——因为C程序往往从main函数开始执行。但一个经常会被忽略的问题是:微控制器(单片机)上电后,是如何寻找到并执行main函数的呢?很显然微控制器无法从硬件上定位main函数的入口地址,因为使用C语言作为开发语言后,变量/函数的地址便由编译器在编译时自行分配,这样一来main函数的入口地址在微控制器的内部存储空间中不再是绝对不变的。相信读者都可以回答这个问题,答案也许大同小异,但肯定都有个关键词,叫“启动文件”,用英文单词来描述是“Bootloader”。
无论性能高下,结构简繁,价格贵贱,每一种微控制器(处理器)都必须有启动文件,启动文件的作用便是负责执行微控制器从“复位”到“开始执行main函数”中间这段时间(称为启动过程)所必须进行的工作。最为常见的51,AVR或MSP430等微控制器当然也有对应启动文件,但开发环境往往自动完整地提供了这个启动文件,不需要开发人员再行干预启动过程,只需要从main函数开始进行应用程序的设计即可。
话题转到STM32微控制器,无论是keil
uvision4还是IAR EWARM开发环境,ST公司都提供了现成的直接可用的启动文件,程序开发人员可以直接引用启动文件后直接进行C应用程序的开发。这样能大大减小开发人员从其它微控制器平台跳转至STM32平台,也降低了适应STM32微控制器的难度(对于上一代ARM的当家花旦ARM9,启动文件往往是第一道难啃却又无法逾越的坎)。
相对于ARM上一代的主流ARM7/ARM9内核架构,新一代Cortex内核架构的启动方式有了比较大的变化。ARM7/ARM9内核的控制器在复位后,CPU会从存储空间的绝对地址0x000000取出第一条指令执行复位中断服务程序的方式启动,即固定了复位后的起始地址为0x000000(PC = 0x000000)同时中断向量表的位置并不是固定的。而Cortex-M3内核则正好相反,有3种情况:
1、 通过boot引脚设置可以将中断向量表定位于SRAM区,即起始地址为0x2000000,同时复位后PC指针位于0x2000000处;
2、 通过boot引脚设置可以将中断向量表定位于FLASH区,即起始地址为0x8000000,同时复位后PC指针位于0x8000000处;
3、 通过boot引脚设置可以将中断向量表定位于内置Bootloader区,本文不对这种情况做论述;
而Cortex-M3内核规定,起始地址必须存放堆顶指针,而第二个地址则必须存放复位中断入口向量地址,这样在Cortex-M3内核复位后,会自动从起始地址的下一个32位空间取出复位中断入口向量,跳转执行复位中断服务程序。对比ARM7/ARM9内核,Cortex-M3内核则是固定了中断向量表的位置而起始地址是可变化的。
有了上述准备只是后,下面以STM32的2.02固件库提供的启动文件“stm32f10x_vector.s”为模板,对STM32的启动过程做一个简要而全面的解析。
程序清单一:
;文件“stm32f10x_vector.s”,其中注释为行号

DATA_IN_ExtSRAM EQU 0 ;1
Stack_Size EQU 0x00000400 ;2
AREA STACK, NOINIT, READWRITE, ALIGN = 3 ;3
Stack_Mem SPACE Stack_Size ;4
__initial_sp ;5
Heap_Size EQU 0x00000400 ;6
AREA HEAP, NOINIT, READWRITE, ALIGN = 3 ;7
__heap_base ;8
Heap_Mem SPACE Heap_Size ;9
__heap_limit ;10
THUMB ;11
如程序清单一,STM32的启动代码一共224行,使用了汇编语言编写,这其中的主要原因下文将会给出交代。现在从第一行开始分析:
 第1行:定义是否使用外部SRAM,为1则使用,为0则表示不使用。此语行若用C语言表达则等价于:
#define DATA_IN_ExtSRAM 0
 第2行:定义栈空间大小为0x00000400个字节,即1Kbyte。此语行亦等价于:
#define Stack_Size 0x00000400

 第3行:伪指令AREA,表示
 第4行:开辟一段大小为Stack_Size的内存空间作为栈。
 第5行:标号__initial_sp,表示栈空间顶地址。
 第6行:定义堆空间大小为0x00000400个字节,也为1Kbyte。
 第7行:伪指令AREA,表示
 第8行:标号__heap_base,表示堆空间起始地址。

猜你喜欢

转载自blog.csdn.net/tiger15605353603/article/details/81352236