Spectral Matting的python实现

Spectral Matting是一个很好的矩阵分析、图像处理例子,是一个很好的学习例子。
在Github上,有Spectral Matting的MATLAB的实现,却没找到Python的实现,于是我参考了以下两个代码源:
[1]https://github.com/yaksoy/SemanticSoftSegmentation
[2]https://github.com/MarcoForte/closed-form-matting
用python实现了一次,这次实践过程收益良多。

[1]是语义软分割(Yagiz Aksoy, Tae-Hyun Oh, Sylvain Paris, Marc Pollefeys and Wojciech Matusik, “Semantic Soft Segmentation”, ACM Transactions on Graphics (Proc. SIGGRAPH), 2018)的MATLAB实现,它的实现参考了Spectral Matting 原MATLAB的实现方式(http://www.vision.huji.ac.il/SpectralMatting/),并在其上改动了一些部分,让代码更为清晰,为此我选了这个版本作为python翻译的参考。
[2]是A closed-form solution to natural image matting的python实现,Spectral Matting其实是closed-form matting的后续,它们在Laplacian矩阵生成的方式上,是完成相同的。
接下来,我将分以下几部分来实现Spectral Matting:

  • Laplician矩阵的构建
  • 特征值与特征向量选择
  • 优化——寻找合适的alpha
  • alpha的初始化
  • 优化迭代的实现
  • Components的组合

1、Laplician矩阵的构建

根据[1],图像的Laplicain矩阵中元素为:
A q ( i , j ) = { δ i j 1 w q ( 1 + ( I i u q ) T ( Σ q + ϵ w q I 3 × 3 ) ( I j u q ) ) i , j w q 0 otherwise ( 1 ) A_q(i,j)=\left\{ \begin{array} {cc} \delta_{ij}-\frac{1}{\vert w_q\vert}\left(1+(I_i-u_q)^T (\Sigma_q+\frac{\epsilon}{\vert w_q \vert}I_{3\times3}) (I_j-u_q) \right)&i,j\in w_q \\0&\text{otherwise} \end{array} \right.\qquad(1)
其中, w q w_q 3 × 3 3\times3 窗体, w q \vert w_q \vert 是窗体的pixels的数量, Σ q \Sigma_q 是该窗体的 3 × 3 3\times3 协方差, I i , I j I_i,I_j 是窗体中像素i和像素j的颜色值。
这部分的实现代码如下:

def _rolling_block(A, block=(3, 3)):
    """Applies sliding window to given matrix."""
    shape = (A.shape[0] - block[0] + 1, A.shape[1] - block[1] + 1) + block
    strides = (A.strides[0], A.strides[1]) + A.strides
    return as_strided(A, shape=shape, strides=strides)
    
def mattingAffinity(img, eps=10**(-7), win_rad=1):
    """Computes Matting Laplacian for a given image.
    Args:
        img: 3-dim numpy matrix with input image
        eps: regularization parameter controlling alpha smoothness
            from Eq. 12 of the original paper. Defaults to 1e-7.
        win_rad: radius of window used to build Matting Laplacian (i.e.
            radius of omega_k in Eq. 12).
    Returns: sparse matrix holding Matting Laplacian.
    """
    win_size = (win_rad * 2 + 1) ** 2
    h, w, d = img.shape
    # Number of window centre indices in h, w axes
    c_h, c_w = h - 2 * win_rad, w - 2 * win_rad
    win_diam = win_rad * 2 + 1

    indsM = np.arange(h * w).reshape((h, w))
    ravelImg = img.reshape(h * w, d)
    win_inds = _rolling_block(indsM, block=(win_diam, win_diam))

    #win_inds = win_inds.reshape(c_h, c_w, win_size)
    
    win_inds = win_inds.reshape(-1, win_size)
   
    winI = ravelImg[win_inds]

    win_mu = np.mean(winI, axis=1, keepdims=True)
    win_var = np.einsum('...ji,...jk ->...ik', winI, winI) / win_size - np.einsum('...ji,...jk ->...ik', win_mu, win_mu)

    inv = np.linalg.inv(win_var + (eps/win_size)*np.eye(3))

    X = np.einsum('...ij,...jk->...ik', winI - win_mu, inv)
    X = np.einsum('...ij,...kj->...ik', X, winI - win_mu)
    vals = (1.0/win_size)*(1 + X)

    nz_indsCol = np.tile(win_inds, win_size).ravel()
    nz_indsRow = np.repeat(win_inds, win_size).ravel()
    nz_indsVal = vals.ravel()
    A = scipy.sparse.coo_matrix((nz_indsVal, (nz_indsRow, nz_indsCol)), shape=(h*w, h*w))
    return A

def affinityMatrixToLaplacian(aff):
    degree = aff.sum(axis=1)
    degree = np.asarray(degree)
    degree = degree.ravel()
    Lap = scipy.sparse.diags(degree)-aff
    return Lap

其中_rolling_block可将图像按窗口要求(3*3)切成小块,并返回窗体像素所在矩阵的index,用于窗口的像素提取。
公式(1)的具体实现时以下代码片段:

win_mu = np.mean(winI, axis=1, keepdims=True)
    win_var = np.einsum('...ji,...jk ->...ik', winI, winI) / win_size - np.einsum('...ji,...jk ->...ik', win_mu, win_mu)

    inv = np.linalg.inv(win_var + (eps/win_size)*np.eye(3))

    X = np.einsum('...ij,...jk->...ik', winI - win_mu, inv)
    X = np.einsum('...ij,...kj->...ik', X, winI - win_mu)
    vals = (1.0/win_size)*(1 + X)

此处用到np.einsum()函数,它可以完成复杂的张量计算。在得到各窗体计算结果后,由scipy.sparse.coo_matrix()构造稀疏矩阵L。
将前面几个函数串起来,求图像的laplacian矩阵由以下代码片段实现,其中图像来自:
https://github.com/yaksoy/SemanticSoftSegmentation/blob/master/docia.png

image = Image.open('docia.png')
img_s = image.resize((160,80))
im_np = np.asarray(img_s)
w = im_np.shape[0]
img = im_np[:,:w,:]/255.0

A = mattingAffinity(img)
L = affinityMatrixToLaplacian(A)

在这里插入图片描述
图1 原图
图像读出来后转换为numpy的array类型,将它作为mattingAffinity()的输入,计算亲和矩阵A,和Laplician矩阵L。

2、特征值与特征向量选择

[1]的一个关键思路是:在图像分割后,能得到若干个components(比如是10个),它们可由最小特征矢量(比如是50个)的线性组合得到,即:
α k = E y k ( 2 ) \mathbf \alpha^k=\mathbf E\mathbf y^k\qquad(2)
其中, E \mathbf E 是特征矢量(比如是,最小的50个特征矢量)构成的矩阵,为对应我们的上述代码,其形状为 6400 × 50 6400\times50 ,6400是图像像素的总数( 80 × 80 80\times80 ),50是最小特征矢量的数量。 y k \mathbf y^k 是第k个component对应的线性组合,其形状为 50 × 1 50\times1 ,而 α k \alpha^k 是第k个component对应的alpha值,是 6400 × 1 6400\times 1 的矢量。
以下是实现的代码:
1)求出L矩阵最小特征值对应的特征矢量;
2)并从大到小进行排序。

eigVals, eigVecs = scipy.sparse.linalg.eigs(L, k=50, which='SM')

eigVals = np.abs(eigVals)
index_sorted = np.argsort(-eigVals)  #逆序排列
eigVals = eigVals[index_sorted]
eigVecs = eigVecs[:,index_sorted]

X = eigVecs
X = np.sign(np.real(X))*np.abs(X)
eigVecs = X

因为,L是稀疏矩阵(sparse matrix),因此需要用scipy.sparse.linalg.eigs()求解其特征值和对应的特征矢量,但它求出的矢量没有进行排序,因此在此还需要对特征值以小到大进行排序。
这里用scipy.sparse.linalg.eigs代替MATLAB的eigs,可充分体现MATLAB的高效,它的计算速度明显优于scipy。
这50个特征矢量显示出来就是这样的 :
在这里插入图片描述
图2 50个最小特征矢量
显示代码如下:

fig, ax = plt.subplots(10,5, sharex=True, sharey=True)
fig.set_size_inches((15,15))

for i in range(50):
    row = int(i/5)
    col = int(i%5)
    eigVec = eigVecs[:,i]
    eigVec = np.reshape(eigVec, (w,w))
    ax[row, col].imshow(eigVec)
plt.show()

回顾公式(2):
α k = E y k ( 2 ) \mathbf \alpha^k=\mathbf E\mathbf y^k\qquad(2)
E \mathbf E 就是由这些特征矢量构成的。

3、优化——寻找合适的alpha

理想的 α \alpha 是由0-1组成的矢量:若图像可以被分割成K个独立component的话,则每个独立component对应的 α k , k { 1 , , K } \alpha^k,k\in\{1,\dots,K\} ,在理想情况下,各分量( α i k \alpha_i^k )应趋向0(完全不透明)或1(完全透明)。
为达到这个目标,需要找到合适的线性组合加权,即(2)中的 y \mathbf y 。为达到这个目的,[1]借助了一个牵引函数来实现:
ρ ( α ) = α γ + 1 α γ \rho(\alpha)= \vert \alpha\vert^{\gamma}+\vert 1-\alpha\vert^{\gamma}
它的图像如下,
在这里插入图片描述
图3 牵引函数图像
从图3可以看到该函数有将变量向0或1牵引的能力,于是[1]将优化的目标函数设计为:
i , k α i k γ + 1 α i k γ  ,where  α k = E y k Subject to,  k α i k = 1 ( 3 ) \sum_{i,k}\vert \alpha_i^k\vert^{\gamma}+\vert 1-\alpha_i^k\vert^{\gamma} \text{ ,where $\alpha^k=Ey^k$}\\ \text{Subject to, } \sum_k \alpha_i^k=1 \qquad(3)
(3)式中, i i 是像素index, k k 是component的index。 E E 是特征矢量构成的矩阵, y k y^k α k \alpha^k 的加权矢量,与(2)式定义相同。在某一个像素(像素 i i )上,众components在该点的 α i k \alpha_i^k 的和等于1,即: k α i k = 1 \sum_k \alpha_i^k=1

为找到(3)式的最小值,[1]用Newton法迭代求解,并对(3)式进行二次型近似,有:
i , j u i k α i k 2 + v i k 1 α i k 2  ,where  α k = E y k ( 4 ) u i k α i k γ 2 , v i k 1 α i k γ 2 . Subject to,  k α i k = 1 \sum_{i,j}u_i^k\vert \alpha_i^k\vert^2+v_i^k\vert 1-\alpha_i^k\vert^2 \text{ ,where $\alpha^k=Ey^k$}\qquad(4) \\ u_i^k \sim \vert \alpha_i^k\vert^{\gamma-2},v_i^k \sim \vert 1-\alpha_i^k\vert^{\gamma-2} \\ . \\ \text{Subject to, } \sum_k \alpha_i^k=1
其中, \sim 表示正比关系,(3)式被转化为(4),即二次型最优化问题,当 u i k u_i^k v i k v_i^k 一定时,(4)的最优解有闭式解,它相当于求解下列线性方程的解:
[ I d I d I d I d 0 W 1 + W K W K W K 0 W K W 2 + W K W K W K 0 W K W K W K 1 + W K ] y = [ E 1 E v 1 + E u K E v 2 + E u K E v K 1 + E u K ] ( 5 ) \left[\begin{array}{ccccc} I_d&I_d&I_d&\cdots&I_d\\ 0&W^1+W^K&W^K&\cdots&W^K\\ 0&W^K&W^2+W^K&\cdots&W^K\\ \vdots&\vdots&\vdots&\ddots&W^K\\ 0&W^K&W^K&\cdots&W^{K-1}+W^K \end{array} \right]\mathbf y=\left[\begin{array}{c} E\mathbf 1\\ Ev^1+Eu^K\\Ev^2+Eu^K\\ \vdots \\ Ev^{K-1}+Eu^K \end{array} \right]\qquad(5)
其中, u k \mathbf u^k 是一个由 u i k u_i^k 组成的矢量,其形状是: 6400 × 1 6400\times 1 ,同理, v k \mathbf v^k 是一个由 v i k v_i^k 组成的矢量。
U k = d i a g ( u k ) , V k = d i a g ( v k ) U^k=diag(\mathbf u^k),V^k=diag(\mathbf v^k)
W k = E T ( U k + V k ) E W^k=E^T(U^k+V^k)E U k = d i a g ( u k ) , V k = d i a g ( v k ) U^k=diag(\mathbf u^k),V^k=diag(\mathbf v^k) E E 是特征矢量组成的矩阵,矩阵形状计算: 50 × 6400 6400 × 6400 6400 × 50 = 50 × 50 50\times 6400 \cdot 6400\times 6400\cdot 6400\times 50=50\times 50
I d I_d 表示与 W k W^k 形状相同的单位矩阵。
优化迭代过程如下:

  1. α \alpha 的一个初始值 α 0 \alpha_0 ,根据它计算 U 0 , V 0 U_0,V_0
  2. 根据 U 0 , V 0 U_0,V_0 计算 W 0 W_0 ,从而得到公式(5)线性方程组;
  3. 求解方程组,得到 y 0 y_0
  4. α 1 = E y 0 \mathbf \alpha_1=\mathbf E\mathbf y_0 ,得到新的 α \alpha ,进入下一次新的迭代。

4、alpha的初始化

由于求解过程非凸,迭代初值对收敛结果有很大影响,必须从一个合法的alpha开始,以下是初始化的实现:

  1. 从特征矢量中挑选40个进行聚类,聚类数量是20。
  2. 将这些聚类中心投影到选定的component上,得到alpha的初值。
maxIter = 20
sparsityParam = 0.1
iterCnt = 20

initialSegmCnt = 40
compCnt = 20

initEigsCnt = 20
eigVals=np.diag(eigVals)

initEigsWeights = np.diag(1/np.diag(eigVals[1: 1+initEigsCnt , 1 : 1+initEigsCnt])**0.5)
initEigVecs = np.matmul(eigVecs[:, 1 : 1+initEigsCnt] , initEigsWeights)

def fastKmeans(X, K):
    # X: points in the N-by-P data matrix
    # K: number of clusters
    maxIters = 100
    X = np.sign(np.real(X))*np.abs(X)
    X = X.transpose()
    center, _ = kmeans(X, K, iter=maxIters)
    center = center.transpose()
    return center

# 求聚类
initialSegments = fastKmeans(initEigVecs, compCnt)
# 投影
softSegments = np.zeros([len(initialSegments), compCnt])
for i in range(compCnt):
    softSegments[:, i] = np.float32(initialSegments == i)

得到的初值如图所示:
在这里插入图片描述
图4 作为初值的alpha
alpha的初值每个分量都由0-1构成,可称为硬分割。

5、优化的迭代实现

迭代的过程主要是构造公式(5),其具体代码如下:

sparsityParam = 0.8
spMat = sparsityParam
thr_e = 1e-10

w1 = 0.3;
w0 = 0.3;

e1 = (w1**sparsityParam) * (np.maximum(np.abs(softSegments-1), thr_e)**(spMat - 2))
e0 = (w0**sparsityParam) * (np.maximum(np.abs(softSegments), thr_e)**(spMat - 2))

scld = 1
eigValCnt = eigVecs.shape[1]
eigVals = np.diag(eigVals)

eig_vectors = eigVecs[:, : eigValCnt]
eig_values = eigVals[: eigValCnt, : eigValCnt]
#print(eig_vectors.shape, eig_values.shape)

# First iter no far removing zero components
removeIter = np.ceil(maxIter/4)
removeIterCycle = np.ceil(maxIter/4)

for it in range(10):
    '''
    tA = zeros((compCnt - 1) * eigValCnt);
    tb = zeros((compCnt - 1) * eigValCnt, 1);
    for k = 1 : compCnt - 1
        weighted_eigs = repmat(e1(:, k) + e0(:, k), 1, eigValCnt) .* eig_vectors;
        tA((k-1) * eigValCnt + 1 : k * eigValCnt, (k-1) * eigValCnt + 1 : k * eigValCnt) 
            = eig_vectors' * weighted_eigs + scld * eig_values;
        tb((k-1) * eigValCnt + 1 : k * eigValCnt) = eig_vectors' * e1(:,k);
    end 
    '''
    
    # Construct the matrices in Eq(9) in Spectral Matting
    tA = np.zeros([(compCnt-1) * eigValCnt,(compCnt-1) * eigValCnt])
    tb = np.zeros([(compCnt-1) * eigValCnt, 1])
    for k in range(compCnt-1):
        weighted_eigs = np.tile((e1[:, k] + e0[:, k]).reshape([-1,1]), 
                                [1, eigValCnt])*eig_vectors
        tA[k * eigValCnt: (k+1) * eigValCnt, k * eigValCnt: (k+1) * eigValCnt] = \
                np.matmul(eig_vectors.transpose(),weighted_eigs) + scld * eig_values
        #tA((k-1) * eigValCnt + 1 : k * eigValCnt, (k-1) * eigValCnt + 1 : k * eigValCnt) = eig_vectors' * weighted_eigs + scld * eig_values;
        tb[k * eigValCnt: (k+1) * eigValCnt] = \
                np.matmul(eig_vectors.transpose() ,e1[:,k].reshape([-1,1]))
    
    '''
    k = compCnt;
    weighted_eigs = repmat(e1(:, k) + e0(:, k), 1, eigValCnt) .* eig_vectors;
    ttA = eig_vectors' * weighted_eigs + scld * eig_values;
    ttb = eig_vectors' * e0(:, k) + scld * sum(eig_vectors' * Laplacian, 2);
    '''
    k = compCnt-1
    weighted_eigs = np.tile((e1[:, k] + e0[:, k]).reshape([-1,1]), 
                            [1, eigValCnt])*eig_vectors
    ttA = np.matmul(eig_vectors.transpose() ,weighted_eigs) + scld * eig_values
    ttb = np.matmul(eig_vectors.transpose() ,e0[:,k].reshape([-1,1]))
    ttb = ttb + np.sum(np.matmul(eig_vectors.transpose(), 
                                 L.toarray()),axis=1,keepdims=True)

    '''
    tA = tA + repmat(ttA, [compCnt - 1, compCnt - 1]);
    tb = tb + repmat(ttb, [compCnt - 1, 1]);
    '''
    tA = tA + np.tile(ttA, [compCnt-1, compCnt-1])
    tb = tb + np.tile(ttb, [compCnt-1, 1])

    # Solve for weights
    # y = reshape(tA \ tb, eigValCnt, compCnt - 1);
    #y = np.matmul(scipy.linalg.inv(tA),tb).reshape([eigValCnt, compCnt - 1])
    # these two methods are same
    #y = scipy.linalg.solve(tA, tb).reshape([eigValCnt, compCnt - 1])
    y = scipy.linalg.solve(tA, tb).reshape([eigValCnt,compCnt - 1], order='F')
    #print(y.shape)
    
    '''
    % Compute the matting comps from weights
    softSegments = eigVecs(:, 1 : eigValCnt) * y;
    softSegments(:, compCnt) = 1 - sum(softSegments(:, 1 : compCnt - 1), 2); 
    % Sets the last one as 1-sum(others), guaranteeing \sum(all) = 1
    '''
    # Compute the matting comps from weights
    softSegments[:,:compCnt-1] = np.matmul(eigVecs[:, : eigValCnt], y)
    # Sets the last one as 1-sum(others), guaranteeing \sum(all) = 1
    softSegments[:, compCnt-1] = 1 - np.sum(softSegments[:, :compCnt-1], axis=1)

    # Remove matting components which are close to zero every once in a while
    if it > removeIter:
        indx = np.argwhere(np.max(np.abs(softSegments),axis=0)>0.1)
        compCnt = len(indx)
        indx = np.squeeze(indx)
        softSegments = softSegments[:,indx]
        removeIter = removeIter + removeIterCycle
        print('After, has components: ' + str(softSegments.shape))
    
    '''
    % Recompute the derivatives of sparsity penalties
    e1 = w1 .^ sparsityParam * max(abs(softSegments-1), thr_e) .^ (spMat - 2);
    e0 = w0 .^ sparsityParam * max(abs(softSegments), thr_e) .^ (spMat - 2);   
    '''
    e1 = (w1**sparsityParam) * (np.maximum(np.abs(softSegments-1), thr_e)**(spMat - 2))
    e0 = (w0**sparsityParam) * (np.maximum(np.abs(softSegments), thr_e)**(spMat - 2))

此时的alpha是这样的:
在这里插入图片描述
图5 经迭代后的软分割alpha
此时的alpha并非全0-1,还有其他的一些值,反映到图5中,是颜色的渐变,不同于图4的硬分割。

6、Components的组合

由于我们得到的components并不一定就是前景(foreground)或背景(background),而前景/背景则是由Components组合而成的。假设前景为:
α = α k 1 + α k 2 + + α k n ( 6 ) \alpha = \alpha^{k_1}+\alpha^{k_2}+\cdots+\alpha^{k_n}\qquad(6)
它( α \alpha )由若干个component( { α k 1 , α k 2 ,   , α k n } \{\alpha^{k_1},\alpha^{k_2},\cdots,\alpha^{k_n}\} )直接和而得到。现在问题转变为找哪几个Components来求和。[1]采用了求components之间相关性,然后枚举各种组合的score的方法来实现Unsupervised Matting,具体方法如下:
1)求相关性矩阵
Φ ( k , l ) = ( α k ) T L α l ( 7 ) \Phi(k,l)=(\alpha^k)^TL\alpha^l\qquad(7)
其中, Φ ( k , l ) \Phi(k,l) 是相关性矩阵 Φ \Phi 的位于k,l位置的元素,该元素是由第k个component的 α k \alpha^k 与第l个component的 α l \alpha^l ,及L运算所得。
2)求组合score
有了相关性矩阵后,可定义组合score为:
J ( α ) = b T Φ b ( 8 ) J(\alpha) = b^T\Phi b\qquad(8)
b是示性矢量,由0-1构成,反映component参与叠加与否。若有K个components则b的组合数为 2 K 2^K ,挑出取得最大值的那个或那些,则是matting的结果。

[1]Spectral Matting(http://www.vision.huji.ac.il/SpectralMatting/)

猜你喜欢

转载自blog.csdn.net/StreamRock/article/details/83216937
今日推荐