【Numberical Optimization】4 Trust-Region Methods (zen学习笔记)

TR方法比LS方法收敛速度快

TR方法中有几个参数需要选择:

  1. 模型函数 m_{k}

  2. 信赖域  \Delta _{k}
  3. 求解参数  p_{k}
  • \mathbf{m_{k}}

when \alpha =1,Taylor-series expansion of f around x_{k},which is 

                                          f(x_{k}+p)=f({x_{k}})+\bigtriangledown f(x_{k})p+\frac{1}{2}p^{T}\bigtriangledown ^{2}f(x+tp)p 

where  t is some scalar in the interval (0,1).

By using an approximation B_{k} to the Hessian in the second-order term:

                                                          m_{k}(p)=f_{k}+g_{k}^{T}p+\frac{1}{2}p^{T}B_{k}p 

 Then we seek a solution of subproblem:

                                                        {\color{Blue} min } m_{k}(p)=f_{k}+g_{k}^{T}p+\frac{1}{2}p^{T}B_{k}p 

                                                               s.t. \left \| p \right \| <\bigtriangleup _{k}

The difference between  m_{k}(p)  and f(x_{k}+p) is O(\left \| p \right \|^{2}) , which is small when p is small.

  •  \mathbf{\bigtriangleup _{k}}

 Let 

                                                                \rho _{k}=\frac{f(x_{k})-f(x_{k}+p_{k})}{m_{k}(0)-m_{k}(p_{k})}

1.if  \rho _{k} is negative , the newe value  f_{k+1}  is greater than f_{k} ,  so the step must be rejected.,because step  p_{k}} is  obtained  by minimizing the model  m_{k} . 

2.if  \rho _{k}  is close to 1, so it safe to expand the trust region.

3.if  \rho _{k}  is postive but significantly smaller than 1,we do not alter the trust region.

4.if  \rho _{k}  is close to 0, we shrink the trust region.

  • 专注于求解子问题: 

We sometimes drop the interation subscript k and restate the problem as follows:

                                                        {\color{Cyan} min} m(p)=f+g^{T}p+\frac{1}{2}p^{T}Bp       

                                                                s.t. \left \| p \right \|\leq \bigtriangleup                             

if and only if

                                                          

 (4.8b) is a complementarity condition that states at least one of \lambda  and (\bigtriangleup -\left \| p^{*} \right \|)  must be  0.

                         

                        

When   \bigtriangleup =\bigtriangleup _{1}  ,p^{*3}  lies strictly inside the trust region,we must have \lambda =0 .

When   \bigtriangleup =\bigtriangleup _{2} or  \bigtriangleup _{3},  we have   \bigtriangleup -\left \| p^{*} \right \|=0,  then  we get 

                                                            \lambda p^{*}=-Bp^{*}-g=-\bigtriangledown m(p^{*})

 Finally we get p.


4.1  Algotithms based on  the Cauchy Point


Find an approximate solution

4.1.1  The Cauchy Point

1.Find the vector  p_{k}^{s}  by solving a linear version of subproblem,that is,

                                                                p_{k}^{s}={\color{Cyan} arg}min f_{k}+g_{k}^{T}p                       s.t. \left \| p \right \|\leq \bigtriangleup _{k}

2.Calculate the scalar \tau _{k}  

                                                                \tau _{k}={\color{Cyan} arg}min m_{k}(\tau p_{k}^{s})                 s.t. \left \| \tau p_{k}^{s} \right \|\leq \bigtriangleup _{k}

3.Set p_{k}^{c}=\tau _{k}p_{k}^{s}.

When  g_{k}^{T}B_{k}g_{k}\leq 0,  m_{k}  decreases monotonically with \tau , so \tau =1

When  g_{k}^{T}B_{k}g_{k}> 0,  min m_{k}  ,so \tau =\frac{\left \| g_{k} \right \|^{3}}{\bigtriangleup _{k}g_{k}^{T}B_{k}g_{k}}

                               

  • p_{k}^{s}=-\frac{\bigtriangleup _{k}}{\left \| g_{k} \right \|}g_{k}
  • m_{k}(\tau p_{k}^{s})=f_{k}+\tau p_{k}^{s}\bigtriangledown f_{k}^{T}+\frac{1}{2}\tau ^{2}(p_{k}^{s})B_{k}p_{k}^{s}

Taking the Cauchy point as our step,we are simply implementing the steepest descent method with a particular choice if step length.

 4.1.2  The Dogleg Method

It can be used when B is positive definite.

                                              {\color{Cyan} min} m(p)=f+g^{T}p+\frac{1}{2}p^{T}Bp                             s.t. \left \| p \right \|\leq \bigtriangleup 

We denote the solution of it by p^{*}(\bigtriangleup ).

  • When \left \| p^{B} \right \|=\left \| -B^{-1} g\right \|\leq \bigtriangleup,  p^{*}(\bigtriangleup )=p^{B}
  • When \left \| p^{B} \right \|=\left \| -B^{-1} g\right \|>\bigtriangleup, then we have the restriction \left \| p \right \|\leq \bigtriangleup,so

                                                                          m(p)\approx f+g^{T}p

       so,   p\approx -\frac{g_{k}}{\left \| g_{k} \right \|}.

    Consider the step length \alpha.   \alpha =-\frac{g^{T}g}{g^{T}Bg},then we have 

    {\color{Red} p^{U}=-\frac{g^{T}g}{g^{T}Bg}g}

   1.When p^{U}=\bigtriangleup, then we choose p^{U}

   2..When p^{U}>\bigtriangleup, then let  \left \| \tau p^{U} \right \|=\bigtriangleup, we  choose  \tau p^{U}

   3..When p^{U}<\bigtriangleup,  then  we want p^{U} be close to p^{B},  so

                                             p^{*}(\bigtriangleup )=\begin{cases} \tau p^{U} & \text{ if } 0\leq \tau \leq 1 \\ p^{U}+(\tau -1)(p^{B}-p^{U})& \text{ if } 1\leq\tau \leq 2 \end{cases}

     where

                                                  \begin{cases} \tau =\frac{\bigtriangleup _{k}}{p^{U}} \in [0,1]\\ \tau \in \left \| p^{U}+(\tau -1)(p^{B}-p^{U})=\bigtriangleup _{K} \right \|\in [1,2] \end{cases}

 

4.1.3  Two-Dimensional subspace minimization

The dogleg method  for p can be widen to the entire two-dimensional subspace spanned by pU and pB (equivalently, g and -B^{-1}g). The subproblem is replaced by

                                  {\color{Cyan} min }m(p)=f+g^{T}p+\frac{1}{2}p^{T}Bp\qquad s.t.\,\left \| p \right \|<\bigtriangleup ,\,p\in span[g,\,B^{-1}g].

猜你喜欢

转载自blog.csdn.net/weixin_38716567/article/details/82916987