PyTorch学习(11)——循环神经网络(RNN)-分类

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/github_39611196/article/details/82585234

本篇博客主要介绍采用RNN做MNIST数据集分类。

示例代码:

import torch
from torch import nn
from torch.autograd import Variable
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt

# 超参数
EPOCH = 1
BATCH_SIZE = 64
TIME_STEP = 28  # rnn time step  / image height
INPUT_SIZE = 28  # rnn input size / image width
LR = 0.01
DOWNLOWD_MNIST = False  # 如果没有下载好MNIST数据,设置为True

# 下载数据
# 训练数据
train_data = datasets.MNIST(root='./mnist', train=True, transform=transforms.ToTensor(), download=DOWNLOWD_MNIST)
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)

# 测试数据
test_data = datasets.MNIST(root='./mnist', train=False, transform=transforms.ToTensor())
test_x = Variable(test_data.test_data, volatile=True).type(torch.FloatTensor)[:2000] / 255.
test_y = np.squeeze(test_data.test_labels.numpy())[:2000]


class RNN(nn.Module):
    def __init__(self):
        super(RNN, self).__init__()

        self.rnn = nn.LSTM(
            input_size=INPUT_SIZE,
            hidden_size=64,
            num_layers=1,  # hidden_layer的数目
            batch_first=True,  # 输入数据的维度一般是(batch, time_step, input),该属性表征batch是否放在第一个维度
        )

        self.out = nn.Linear(64, 10)

    def forward(self, x):
        # rnn 运行的结果出了每层的输出之外,还有该层要传入下一层进行辅助分析的hidden state,
        # lstm 的hidden state相比于 RNN,其分成了主线h_n,分线h_c
        r_out, (h_n, h_c) = self.rnn(x, None)  # x shape ( batch, step, input_size), None 之前的hidden state(没有则填None)
        out = self.out(r_out[:, -1, :])  # 选取最后一个时刻的output,进行最终的类别判断
        return out

rnn = RNN()
# print(rnn)

# 优化器
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)
# 误差函数
loss_func = nn.CrossEntropyLoss()

for epoch in range(EPOCH):
    for step, (x, y) in enumerate(train_loader):
        b_x = Variable(x.view(-1, 28, 28))  # reshape x to (batch, time_step, input_size)
        b_y = Variable(y)
        output = rnn(b_x)
        loss = loss_func(output, b_y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if step % 50 == 0:
            test_output = rnn(test_x)
            pred_y = np.squeeze(torch.max(test_output, 1)[1].data.numpy())
            accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)
            print('Epoch: ', epoch, ' | train loss: %.4f' % loss.data.numpy(), ' | test accuracy: %.2f' % accuracy )

# 输出前10个测试数据的测试值
test_output = rnn(test_x[: 10].view(-1, 28, 28))
pred_y = np.squeeze(torch.max(test_output, 1)[1].data.numpy())
print(pred_y, 'prediction number')
print(test_y[:10], 'real number')

网络形式:

RNN (
  (rnn): LSTM(28, 64, batch_first=True)
  (out): Linear (64 -> 10)
)

训练和测试结果:

Epoch:  0  | train loss: 2.3026  | test accuracy: 0.10
Epoch:  0  | train loss: 1.1701  | test accuracy: 0.48
Epoch:  0  | train loss: 0.6764  | test accuracy: 0.70
Epoch:  0  | train loss: 0.5981  | test accuracy: 0.77
Epoch:  0  | train loss: 0.6126  | test accuracy: 0.84
Epoch:  0  | train loss: 0.3277  | test accuracy: 0.87
Epoch:  0  | train loss: 0.2642  | test accuracy: 0.90
Epoch:  0  | train loss: 0.6618  | test accuracy: 0.89
Epoch:  0  | train loss: 0.2244  | test accuracy: 0.91
Epoch:  0  | train loss: 0.3828  | test accuracy: 0.93
Epoch:  0  | train loss: 0.3010  | test accuracy: 0.92
Epoch:  0  | train loss: 0.2409  | test accuracy: 0.94
Epoch:  0  | train loss: 0.1801  | test accuracy: 0.92
Epoch:  0  | train loss: 0.1483  | test accuracy: 0.94
Epoch:  0  | train loss: 0.1329  | test accuracy: 0.93
Epoch:  0  | train loss: 0.1713  | test accuracy: 0.94
Epoch:  0  | train loss: 0.0766  | test accuracy: 0.95
Epoch:  0  | train loss: 0.0923  | test accuracy: 0.94
Epoch:  0  | train loss: 0.0210  | test accuracy: 0.95
[7 2 1 0 4 1 4 2 5 9] prediction number
[7 2 1 0 4 1 4 9 5 9] real number

猜你喜欢

转载自blog.csdn.net/github_39611196/article/details/82585234
今日推荐