梯度下降法,牛顿法,拟牛顿法

目录

 

1. 梯度下降法(Gradient Descent)

2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods)

3. 共轭梯度法(Conjugate Gradient)

4. 启发式优化方法

 5. 解决约束优化问题——拉格朗日乘数法


1. 梯度下降法(Gradient Descent)

梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,

当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。

梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。最速下降法越接近目标值,步长越小,前进越慢。

梯度下降法的搜索迭代示意图如下图所示:

梯度下降法的缺点:

  (1)靠近极小值时收敛速度减慢,如下图所示;

  (2)直线搜索时可能会产生一些问题;

  (3)可能会“之字形”地下降。

 

从上图可以看出,梯度下降法在接近最优解的区域收敛速度明显变慢,利用梯度下降法求解需要很多次的迭代。

在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。

比如对一个线性回归(Linear Logistics)模型,假设下面的h(x)是要拟合的函数,J(theta)为损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了。其中m是训练集的样本个数,n是特征的个数。

 

1)批量梯度下降法(Batch Gradient Descent,BGD)

(1)将J(theta)对theta求偏导,得到每个theta对应的的梯度:

(2)由于是要最小化风险函数,所以按每个参数theta的梯度负方向,来更新每个theta:

(3)从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数据,如果m很大,那么可想而知这种方法的迭代速度会相当的慢。所以,这就引入了另外一种方法——随机梯度下降。

对于批量梯度下降法,样本个数m,x为n维向量,一次迭代需要把m个样本全部带入计算,迭代一次计算量为m*n2。

2)随机梯度下降(Stochastic Gradient Descent,SGD)

(1)上面的风险函数可以写成如下这种形式,损失函数对应的是训练集中每个样本的粒度,而上面批量梯度下降对应的是所有的训练样本:

(2)每个样本的损失函数,对theta求偏导得到对应梯度,来更新theta:

(3)随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将theta迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。但是,SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。

随机梯度下降每次迭代只使用一个样本,迭代一次计算量为n2,

批量梯度下降法和随机梯度下降法比较:

当样本个数m很大的时候,随机梯度下降迭代一次的速度要远高于批量梯度下降方法。两者的关系可以这样理解:随机梯度下降方法以损失很小的一部分精确度和增加一定数量的迭代次数为代价,换取了总体的优化效率的提升。增加的迭代次数远远小于样本的数量。

对批量梯度下降法和随机梯度下降法的总结:

批量梯度下降---最小化所有训练样本的损失函数,使得最终求解的是全局的最优解,即求解的参数是使得风险函数最小,但是对于大规模样本问题效率低下。

随机梯度下降---最小化每条样本的损失函数,虽然不是每次迭代得到的损失函数都向着全局最优方向, 但是大的整体的方向是向全局最优解的,最终的结果往往是在全局最优解附近,适用于大规模训练样本情况。

2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods)

  1)牛顿法(Newton's method)

  牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数(x)的泰勒级数的前面几项来寻找方程(x) = 0的根。牛顿法最大的特点就在于它的收敛速度很快

  具体步骤:

  首先,选择一个接近函数 (x)零点的 x0,计算相应的 (x0) 和切线斜率f  ' (x0)(这里f ' 表示函数 f  的导数)。然后我们计算穿过点(x0,  f  (x0)) 并且斜率为'(x0)的直线和 轴的交点的x坐标,也就是求如下方程的解:

  我们将新求得的点的 坐标命名为x1,通常x1会比x0更接近方程f  (x) = 0的解。因此我们现在可以利用x1开始下一轮迭代。迭代公式可化简为如下所示:

  已经证明,如果f  ' 是连续的,并且待求的零点x是孤立的,那么在零点x周围存在一个区域,只要初始值x0位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果f  ' (x)不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。下图为一个牛顿法执行过程的例子。

  由于牛顿法是基于当前位置的切线来确定下一次的位置,所以牛顿法又被很形象地称为是"切线法"。牛顿法的搜索路径(二维情况)如下图所示:

  牛顿法搜索动态示例图:

 

关于牛顿法和梯度下降法的效率对比:

  从本质上去看,牛顿法是二阶收敛,梯度下降是一阶收敛,所以牛顿法就更快。如果更通俗地说的话,比如你想找一条最短的路径走到一个盆地的最底部,梯度下降法每次只从你当前所处位置选一个坡度最大的方向走一步,牛顿法在选择方向时,不仅会考虑坡度是否够大,还会考虑你走了一步之后,坡度是否会变得更大。所以,可以说牛顿法比梯度下降法看得更远一点,能更快地走到最底部。(牛顿法目光更加长远,所以少走弯路;相对而言,梯度下降法只考虑了局部的最优,没有全局思想。)

  根据wiki上的解释,从几何上说,牛顿法就是用一个二次曲面去拟合你当前所处位置的局部曲面,而梯度下降法是用一个平面去拟合当前的局部曲面,通常情况下,二次曲面的拟合会比平面更好,所以牛顿法选择的下降路径会更符合真实的最优下降路径。

 

注:红色的牛顿法的迭代路径,绿色的是梯度下降法的迭代路径。

牛顿法的优缺点总结:

  优点:二阶收敛,收敛速度快;

  缺点:牛顿法是一种迭代算法,每一步都需要求解目标函数的Hessian矩阵的逆矩阵,计算比较复杂;

                   一定要有正定逆矩阵,极值点导数为零才有解,可能得不到结果。

  2)拟牛顿法(Quasi-Newton Methods)

  拟牛顿法是求解非线性优化问题最有效的方法之一,于20世纪50年代由美国Argonne国家实验室的物理学家W.C.Davidon所提出来。Davidon设计的这种算法在当时看来是非线性优化领域最具创造性的发明之一。不久R. Fletcher和M. J. D. Powell证实了这种新的算法远比其他方法快速和可靠,使得非线性优化这门学科在一夜之间突飞猛进。

  拟牛顿法的本质思想是改善牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使用正定矩阵来近似Hessian矩阵的逆,从而简化了运算的复杂度。拟牛顿法和最速下降法一样只要求每一步迭代时知道目标函数的梯度。通过测量梯度的变化,构造一个目标函数的模型使之足以产生超线性收敛性。这类方法大大优于最速下降法,尤其对于困难的问题。另外,因为拟牛顿法不需要二阶导数的信息,所以有时比牛顿法更为有效。如今,优化软件中包含了大量的拟牛顿算法用来解决无约束,约束,和大规模的优化问题。

  具体步骤:

  拟牛顿法的基本思想如下。首先构造目标函数在当前迭代xk的二次模型:

  这里Bk是一个对称正定矩阵,于是我们取这个二次模型的最优解作为搜索方向,并且得到新的迭代点:

  其中我们要求步长ak 满足Wolfe条件。这样的迭代与牛顿法类似,区别就在于用近似的Hesse矩阵Bk  

代替真实的Hesse矩阵。所以拟牛顿法最关键的地方就是每一步迭代中矩阵Bk

 的更新。现在假设得到一个新的迭代xk+1,并得到一个新的二次模型:

  我们尽可能地利用上一步的信息来选取Bk。具体地,我们要求 

  从而得到

  这个公式被称为割线方程。常用的拟牛顿法有DFP算法和BFGS算法。

3. 共轭梯度法(Conjugate Gradient)

共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。

  具体的实现步骤请参加wiki百科共轭梯度法

  下图为共轭梯度法和梯度下降法搜索最优解的路径对比示意图:

注:绿色为梯度下降法,红色代表共轭梯度法

 

在介绍共轭梯度法前,我们得先说一个这样一个二次泛函的性质,用大白话来说,就是这样:

  • 用一根xy平面上的直线穿过二次曲面在xy平面上的值形成的椭圆,那么这个直线上的二次泛函的值在直线被椭圆截出的线段的中点处取到最小。且这个最小值是唯一的,如图。 
    这里写图片描述

  • 最小值的梯度方向垂直于上面提到的那根直线。

  • 最小值点位于位于这根直线的共轭超平面上(一维),不知道什么是共轭超平面,没有涉及到公式推导计算,这里可先不用管,只要知道它是由这根直线的法平面和AA以及真解有关的一个平面即可。

这个其实很好理解,对于二次泛函形成的函数图像,我们沿着每个方向用一个平行于z轴的平面去切它,得到的是一个抛物面,放到坐标平面上,就是一根抛物线,抛物线的最小值点当然在中点处取到。注意,这里的负梯度方向,就是沿最速下降方向,它不一定能经过椭圆的圆心。

以上是以最简单的二维的情况来说明这个问题,更高维的情况也如是。比如说三维的情况,我们可以想象有一个西瓜,它的内部每一点处有某一种性质,比如说甜度(或密度等等),假设它在正中心处甜度最高,最外面是瓜皮最不甜,依次往里甜度是呈抛物增长的。那么,我们拿一把刀,给它切一刀(不一定对半),会形成一个切面,那么这个切面是个椭圆,且在椭圆的正中间是最甜的(极值点),拿一根牙签,从这个最甜的点垂直切面往里面一戳,这个方向就是这一点负梯度方向。当然,牙签够长,你也不一定能正好西瓜正中心。因此才有了从最速下降法到共轭梯度法的改进。

有了以上的思想,我们很容易就能推导出共轭梯度法的算法过程,不想摆公式,还是以切西瓜为例:

  • 首先我们拿一根足够长的牙签沿着西瓜任意位置将它穿透,那么前面的性质告诉我们没在西瓜中的牙签的中点就是这根牙签上的最值点。(这其实就是最速下降方法的步骤,最速下降法往往是沿着一个方向取到最小,步长以此来决定,接着换一个方向,同样一个过程……)

  • 接着找到最值点(牙签中点)的梯度方向,最速下降法就是以梯度方向接着找最小值点,但我们现在不这么做。梯度方向和原来的牙签的方向形成了一个面,我们试图在这个面里面找一个更好的方向。前面的性质告诉我们,这个切面的中点是这个面的最小值点,那么我就应该以牙签中点和这个切面的连线作为方向是最理想的。

  • 问题是这个切面的中点不好找,好在前面的性质告诉我们,这个切面的中点的梯度方向是垂直于这个切面的,把提到的这几个条件联立起来,其实很快就能找到牙签中点和切面中点的连线方向,以及我们所需要的步长。

把以上的过程用公式摆开,就得到了共轭梯度法算法过程,如下算法框图所示: 
这里写图片描述

当然,共轭梯度算法并不是很快,后来人们提出了很多方法去加快这个速度,比如说各种预优方法等等,都是后话,这里不提。

在数值线性代数中,共轭梯度法是一种求解对称正定线性方程组Ax=b的迭代方法。

事实上,求解Ax=b等价于求解: min||Ax−b||22min||Ax−b||22 ,将其展开后可以得到:minxTATAx−bTAx+bTbminxTATAx−bTAx+bTb ,也就是等价于求解min12xTATAx−bTAxmin12xTATAx−bTAx 。于是解方程问题就转化为了求解二次规划问题(QP)。

共轭梯度法是介于梯度下降法与牛顿法之间的一个方法,是一个一阶方法。它克服了梯度下降法收敛慢的缺点,又避免了存储和计算牛顿法所需要的二阶导数信息。

在n维的优化问题中,共轭梯度法最多n次迭代就能找到最优解(是找到,不是接近),但是只针对二次规划问题。

共轭梯度法的思想就是找到n个两两共轭的共轭方向,每次沿着一个方向优化得到该方向上的极小值,后面再沿其它方向求极小值的时候,不会影响前面已经得到的沿哪些方向上的极小值,所以理论上对n个方向都求出极小值就得到了n维问题的极小值。

4. 启发式优化方法

  启发式方法指人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案。启发式优化方法种类繁多,包括经典的模拟退火方法、遗传算法、蚁群算法以及粒子群算法等等。

  还有一种特殊的优化算法被称之多目标优化算法,它主要针对同时优化多个目标(两个及两个以上)的优化问题,这方面比较经典的算法有NSGAII算法、MOEA/D算法以及人工免疫算法等。

 5. 解决约束优化问题——拉格朗日乘数法

  有关拉格朗日乘数法的介绍请见另一篇博客:《拉格朗日乘数法》

 参考:http://www.cnblogs.com/maybe2030/p/4751804.html

https://www.cnblogs.com/shixiangwan/p/7532830.html

https://blog.csdn.net/qq547276542/article/details/78186050

https://blog.csdn.net/lusongno1/article/details/78550803

猜你喜欢

转载自blog.csdn.net/sunflower_sara/article/details/81215135
今日推荐