Faster R-CNN/R-FCN里mAP的计算过程(voc_eval.py解析)

Faster R-CNN/ R-FCN在github上的python源码用mAP来度量模型的性能。mAP是各类别AP的平均,而各类别AP值是该类别precision(prec)对该类别recall(rec)的积分得到的,即PR曲线下面积,关于PR曲线和AP计算相关博客很多不在这赘述,这里主要从代码角度看一下pascal_voc.py和voc_eval.py里关于AP,rec, prec的实现。

源码里有AP和mAP的计算部分,但没有画PR曲线,上一篇博客讲了通过在lib/datasets/pascal_voc.py里加几行代码画PR曲线。严格来说,其实就是加了一句话:

pl.plot(rec, prec, lw=2, 
              label='Precision-recall curve of class {} (area = {:.4f})'
                    ''.format(cls, ap))

参数里的rec和prec是由函数voc_eval得到:

rec, prec, ap = voc_eval(
        filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
        use_07_metric=use_07_metric)

该函数在lib/datasets/voc_eval.py中,详细分析如下:

# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Bharath Hariharan
# --------------------------------------------------------

import xml.etree.ElementTree as ET
import os
import cPickle
import numpy as np

def parse_rec(filename): #读取标注的xml文件
    """ Parse a PASCAL VOC xml file """
    tree = ET.parse(filename)
    objects = []
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        obj_struct['pose'] = obj.find('pose').text
        obj_struct['truncated'] = int(obj.find('truncated').text)
        obj_struct['difficult'] = int(obj.find('difficult').text)
        bbox = obj.find('bndbox')
        obj_struct['bbox'] = [int(bbox.find('xmin').text),
                              int(bbox.find('ymin').text),
                              int(bbox.find('xmax').text),
                              int(bbox.find('ymax').text)]
        objects.append(obj_struct)

    return objects

def voc_ap(rec, prec, use_07_metric=False):
    """ ap = voc_ap(rec, prec, [use_07_metric])
    Compute VOC AP given precision and recall.
    If use_07_metric is true, uses the
    VOC 07 11 point method (default:False).
    计算AP值,若use_07_metric=true,则用11个点采样的方法,将rec从0-1分成11个点,这些点prec值求平均近似表示AP
    若use_07_metric=false,则采用更为精确的逐点积分方法
    """
    if use_07_metric:
        # 11 point metric
        ap = 0.
        for t in np.arange(0., 1.1, 0.1):
            if np.sum(rec >= t) == 0:
                p = 0
            else:
                p = np.max(prec[rec >= t])
            ap = ap + p / 11.
    else:
        # correct AP calculation
        # first append sentinel values at the end
        mrec = np.concatenate(([0.], rec, [1.]))
        mpre = np.concatenate(([0.], prec, [0.]))

        # compute the precision envelope
        for i in range(mpre.size - 1, 0, -1):
            mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

        # to calculate area under PR curve, look for points
        # where X axis (recall) changes value
        i = np.where(mrec[1:] != mrec[:-1])[0]

        # and sum (\Delta recall) * prec
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap

def voc_eval(detpath,  ######主函数,计算当前类别的recall和precision
             annopath,
             imagesetfile,
             classname,
             cachedir,
             ovthresh=0.5,
             use_07_metric=False):
    """rec, prec, ap = voc_eval(detpath,
                                annopath,
                                imagesetfile,
                                classname,
                                [ovthresh],
                                [use_07_metric])
    Top level function that does the PASCAL VOC evaluation.
    #detpath检测结果txt文件,路径VOCdevkit/results/VOC20xx/Main/<comp_id>_det_test_aeroplane.txt。
    """该文件格式:imagename1 confidence xmin ymin xmax ymax  (图像1的第一个结果)
                   imagename1 confidence xmin ymin xmax ymax  (图像1的第二个结果)
                   imagename1 confidence xmin ymin xmax ymax  (图像2的第一个结果)
                   ......
        每个结果占一行,检测到多少个BBox就有多少行,这里假设有20000个检测结果
    """
    detpath: Path to detections
        detpath.format(classname) should produce the detection results file.
    annopath: Path to annotations
        annopath.format(imagename) should be the xml annotations file. #xml 标注文件。
    imagesetfile: Text file containing the list of images, one image per line. #数据集划分txt文件,路径VOCdevkit/VOC20xx/ImageSets/Main/test.txt这里假设测试图像1000张,那么该txt文件1000行。
    classname: Category name (duh) #种类的名字,即类别,假设类别2(一类目标+背景)。
    cachedir: Directory for caching the annotations #缓存标注的目录路径VOCdevkit/annotation_cache,图像数据只读文件,为了避免每次都要重新读数据集原始数据。
    [ovthresh]: Overlap threshold (default = 0.5) #重叠的多少大小。
    [use_07_metric]: Whether to use VOC07's 11 point AP computation 
        (default False) #是否使用VOC07的AP计算方法,voc07是11个点采样。
    """
    # assumes detections are in detpath.format(classname)
    # assumes annotations are in annopath.format(imagename)
    # assumes imagesetfile is a text file with each line an image name
    # cachedir caches the annotations in a pickle file

    # first load gt 加载ground truth。
    if not os.path.isdir(cachedir):
        os.mkdir(cachedir)
    cachefile = os.path.join(cachedir, 'annots.pkl') #只读文件名称。
    # read list of images
    with open(imagesetfile, 'r') as f:
        lines = f.readlines() #读取所有待检测图片名。
    imagenames = [x.strip() for x in lines] #待检测图像文件名字存于数组imagenames,长度1000。

    if not os.path.isfile(cachefile): #如果只读文件不存在,则只好从原始数据集中重新加载数据
        # load annots
        recs = {}
        for i, imagename in enumerate(imagenames):
            recs[imagename] = parse_rec(annopath.format(imagename)) #parse_rec函数读取当前图像标注文件,返回当前图像标注,存于recs字典(key是图像名,values是gt)
            if i % 100 == 0:
                print 'Reading annotation for {:d}/{:d}'.format(
                    i + 1, len(imagenames)) #进度条。
        # save
        print 'Saving cached annotations to {:s}'.format(cachefile)
        with open(cachefile, 'w') as f:
            cPickle.dump(recs, f) #recs字典c保存到只读文件。
    else:
        # load
        with open(cachefile, 'r') as f:
            recs = cPickle.load(f) #如果已经有了只读文件,加载到recs。

    # extract gt objects for this class #按类别获取标注文件,recall和precision都是针对不同类别而言的,AP也是对各个类别分别算的。
    class_recs = {} #当前类别的标注
    npos = 0 #npos标记的目标数量
    for imagename in imagenames:
        R = [obj for obj in recs[imagename] if obj['name'] == classname] #过滤,只保留recs中指定类别的项,存为R。
        bbox = np.array([x['bbox'] for x in R]) #抽取bbox
        difficult = np.array([x['difficult'] for x in R]).astype(np.bool) #如果数据集没有difficult,所有项都是0.

        det = [False] * len(R) #len(R)就是当前类别的gt目标个数,det表示是否检测到,初始化为false。
        npos = npos + sum(~difficult) #自增,非difficult样本数量,如果数据集没有difficult,npos数量就是gt数量。
        class_recs[imagename] = {'bbox': bbox,  
                                 'difficult': difficult,
                                 'det': det}

    # read dets 读取检测结果
    detfile = detpath.format(classname)
    with open(detfile, 'r') as f:
        lines = f.readlines()

    splitlines = [x.strip().split(' ') for x in lines] #假设检测结果有20000个,则splitlines长度20000
    image_ids = [x[0] for x in splitlines] #检测结果中的图像名,image_ids长度20000,但实际图像只有1000张,因为一张图像上可以有多个目标检测结果
    confidence = np.array([float(x[1]) for x in splitlines]) #检测结果置信度
    BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) #变为浮点型的bbox。

    # sort by confidence 将20000各检测结果按置信度排序
    sorted_ind = np.argsort(-confidence) #对confidence的index根据值大小进行降序排列。
    sorted_scores = np.sort(-confidence) #降序排列。
    BB = BB[sorted_ind, :] #重排bbox,由大概率到小概率。
    image_ids = [image_ids[x] for x in sorted_ind] 对image_ids相应地进行重排。

    # go down dets and mark TPs and FPs 
    nd = len(image_ids) #注意这里是20000,不是1000
    tp = np.zeros(nd) # true positive,长度20000
    fp = np.zeros(nd) # false positive,长度20000
    for d in range(nd): #遍历所有检测结果,因为已经排序,所以这里是从置信度最高到最低遍历
        R = class_recs[image_ids[d]] #当前检测结果所在图像的所有同类别gt
        bb = BB[d, :].astype(float) #当前检测结果bbox坐标
        ovmax = -np.inf
        BBGT = R['bbox'].astype(float) #当前检测结果所在图像的所有同类别gt的bbox坐标

        if BBGT.size > 0: 
            # compute overlaps 计算当前检测结果,与该检测结果所在图像的标注重合率,一对多用到python的broadcast机制
            # intersection
            ixmin = np.maximum(BBGT[:, 0], bb[0])
            iymin = np.maximum(BBGT[:, 1], bb[1])
            ixmax = np.minimum(BBGT[:, 2], bb[2])
            iymax = np.minimum(BBGT[:, 3], bb[3])
            iw = np.maximum(ixmax - ixmin + 1., 0.)
            ih = np.maximum(iymax - iymin + 1., 0.)
            inters = iw * ih

            # union
            uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
                   (BBGT[:, 2] - BBGT[:, 0] + 1.) *
                   (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)

            overlaps = inters / uni
            ovmax = np.max(overlaps)#最大重合率
            jmax = np.argmax(overlaps)#最大重合率对应的gt

        if ovmax > ovthresh:#如果当前检测结果与真实标注最大重合率满足阈值
            if not R['difficult'][jmax]:
                if not R['det'][jmax]:
                    tp[d] = 1. #正检数目+1
                    R['det'][jmax] = 1 #该gt被置为已检测到,下一次若还有另一个检测结果与之重合率满足阈值,则不能认为多检测到一个目标
                else: #相反,认为检测到一个虚警
                    fp[d] = 1.
        else: #不满足阈值,肯定是虚警
            fp[d] = 1.

    # compute precision recall
    fp = np.cumsum(fp) #积分图,在当前节点前的虚警数量,fp长度
    tp = np.cumsum(tp) #积分图,在当前节点前的正检数量
    rec = tp / float(npos) #召回率,长度20000,从0到1
    # avoid divide by zero in case the first detection matches a difficult
    # ground truth 准确率,长度20000,长度20000,从1到0
    prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
    ap = voc_ap(rec, prec, use_07_metric)

    return rec, prec, ap




猜你喜欢

转载自blog.csdn.net/hongxingabc/article/details/80090736