机器学习随笔四—谱聚类(spectral clustering)原理总结

谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂。在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一。下面我们就对谱聚类的算法原理做一个总结。

1. 谱聚类概述

谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用。它的主要思想是把所有的数据看做空间中的点,这些点之间可以用边连接起来。距离较远的两个点之间的边权重值较低,而距离较近的两个点之间的边权重值较高,通过对所有数据点组成的图进行切图,让切图后不同的子图间边权重和尽可能的低,而子图内的边权重和尽可能的高,从而达到聚类的目的。

乍一看,这个算法原理的确简单,但是要完全理解这个算法的话,需要对图论中的无向图,线性代数和矩阵分析都有一定的了解。下面我们就从这些需要的基础知识开始,一步步学习谱聚类。

2. 谱聚类基础之一:无向权重图

由于谱聚类是基于图论的,因此我们首先温习下图的概念。对于一个图G,我们一般用点的集合V和边的集合E来描述。即为G(V,E)。其中V即为我们数据集里面所有的点(v1,v2,…vn)。对于V中的任意两个点,可以有边连接,也可以没有边连接。我们定义权重wij为点vi和点vj之间的权重。由于我们是无向图,所以wij=wji。

对于有边连接的两个点vi和vj,wij>0,对于没有边连接的两个点vi和vj,wij=0。对于图中的任意一个点vi,它的度di定义为和它相连的所有边的权重之和,即
这里写图片描述
利用每个点度的定义,我们可以得到一个nxn的度矩阵D,它是一个对角矩阵,只有主对角线有值,对应第i行的第i个点的度数,定义如下:

这里写图片描述
利用所有点之间的权重值,我们可以得到图的邻接矩阵W,它也是一个nxn的矩阵,第i行的第j个值对应我们的权重wij。

除此之外,对于点集V的的一个子集A⊂V,我们定义:
|A|:=子集A中点的个数
这里写图片描述

3. 谱聚类基础之二:相似矩阵

在上一节我们讲到了邻接矩阵W,它是由任意两点之间的权重值wij组成的矩阵。通常我们可以自己输入权重,但是在谱聚类中,我们只有数据点的定义,并没有直接给出这个邻接矩阵,那么怎么得到这个邻接矩阵呢?

基本思想是,距离较远的两个点之间的边权重值较低,而距离较近的两个点之间的边权重值较高,不过这仅仅是定性,我们需要定量的权重值。一般来说,我们可以通过样本点距离度量的相似矩阵S来获得邻接矩阵W。

构建邻接矩阵W的方法有三类。ϵ-邻近法,K邻近法和全连接法。

对于ϵ-邻近法,它设置了一个距离阈值ϵ,然后用欧式距离sij度量任意两点xi和xj的距离。即相似矩阵的sij=||xi−xj||2, 然后根据sij和ϵ的大小关系,来定义邻接矩阵W如下:
这里写图片描述
从上式可见,两点间的权重要不就是ϵ,要不就是0,没有其他的信息了。距离远近度量很不精确,因此在实际应用中,我们很少使用ϵ-邻近法。

扫描二维码关注公众号,回复: 2257538 查看本文章

第二种定义邻接矩阵W的方法是K邻近法,利用KNN算法遍历所有的样本点,取每个样本最近的k个点作为近邻,只有和样本距离最近的k个点之间的wij>0。但是这种方法会造成重构之后的邻接矩阵W非对称,我们后面的算法需要对称邻接矩阵。为了解决这种问题,一般采取下面两种方法之一:
这里写图片描述
第三种定义邻接矩阵W的方法是全连接法,相比前两种方法,第三种方法所有的点之间的权重值都大于0,因此称之为全连接法。可以选择不同的核函数来定义边权重,常用的有多项式核函数,高斯核函数和Sigmoid核函数。最常用的是高斯核函数RBF,此时相似矩阵和邻接矩阵相同
这里写图片描述
在实际的应用中,使用第三种全连接法来建立邻接矩阵是最普遍的,而在全连接法中使用高斯径向核RBF是最普遍的。

4. 谱聚类基础之三:拉普拉斯矩阵

单独把拉普拉斯矩阵(Graph Laplacians)拿出来介绍是因为后面的算法和这个矩阵的性质息息相关。它的定义很简单,拉普拉斯矩阵L=D−W。D即为我们第二节讲的度矩阵,它是一个对角矩阵。而W即为我们第二节讲的邻接矩阵,它可以由我们第三节的方法构建出。

    拉普拉斯矩阵有一些很好的性质如下:

    1)拉普拉斯矩阵是对称矩阵,这可以由D和W都是对称矩阵而得。

    2)由于拉普拉斯矩阵是对称矩阵,则它的所有的特征值都是实数。

    3)对于任意的向量f,我们有
这里写图片描述
   这个利用拉普拉斯矩阵的定义很容易得到如下:
这里写图片描述
    4) 拉普拉斯矩阵是半正定的,且对应的n个实数特征值都大于等于0,即0=λ1≤λ2≤…≤λn, 且最小的特征值为0,这个由性质3很容易得出。

5. 谱聚类基础之四:无向图切图

对于无向图G的切图,我们的目标是将图G(V,E)切成相互没有连接的k个子图,每个子图点的集合为:A1,A2,..Ak,它们满足Ai∩Aj=∅,且A1∪A2∪…∪Ak=V.

对于任意两个子图点的集合A,B⊂V, A∩B=∅, 我们定义A和B之间的切图权重为:
这里写图片描述
那么对于我们k个子图点的集合:A1,A2,..Ak,我们定义切图cut为:
这里写图片描述
其中A¯¯¯¯i为Ai的补集,意为除Ai子集外其他V的子集的并集。

那么如何切图可以让子图内的点权重和高,子图间的点权重和低呢?一个自然的想法就是最小化cut(A1,A2,…Ak), 但是可以发现,这种极小化的切图存在问题,如下图:
这里写图片描述

我们选择一个权重最小的边缘的点,比如C和H之间进行cut,这样可以最小化cut(A1,A2,…Ak), 但是却不是最优的切图,如何避免这种切图,并且找到类似图中”Best Cut”这样的最优切图呢?我们下一节就来看看谱聚类使用的切图方法。  

6. 谱聚类算法流程

铺垫了这么久,终于可以总结下谱聚类的基本流程了。一般来说,谱聚类主要的注意点为相似矩阵的生成方式(参见第二节),切图的方式(参见第六节)以及最后的聚类方法(参见第六节)。

最常用的相似矩阵的生成方式是基于高斯核距离的全连接方式,最常用的切图方式是Ncut。而到最后常用的聚类方法为K-Means。下面以Ncut总结谱聚类算法流程。

    输入:样本集D=(x1,x2,…,xn),相似矩阵的生成方式, 降维后的维度k1, 聚类方法,聚类后的维度k2
    输出: 簇划分C(c1,c2,…ck2). 

    1) 根据输入的相似矩阵的生成方式构建样本的相似矩阵S

    2)根据相似矩阵S构建邻接矩阵W,构建度矩阵D

    3)计算出拉普拉斯矩阵L

    4)构建标准化后的拉普拉斯矩阵
    这里写图片描述
    5)计算
    这里写图片描述
    最小的k1个特征值所各自对应的特征向量f
    6) 将各自对应的特征向量f组成的矩阵按行标准化,最终组成n×k1维的特征矩阵F

    7)对F中的每一行作为一个k1维的样本,共n个样本,用输入的聚类方法进行聚类,聚类维数为k2。

    8)得到簇划分C(c1,c2,…ck2).         

7. 谱聚类算法总结

谱聚类算法是一个使用起来简单,但是讲清楚却不是那么容易的算法,它需要你有一定的数学基础。如果你掌握了谱聚类,相信你会对矩阵分析,图论有更深入的理解。同时对降维里的主成分分析也会加深理解。

    下面总结下谱聚类算法的优缺点。

    谱聚类算法的主要优点有:

    1)谱聚类只需要数据之间的相似度矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法比如K-Means很难做到

    2)由于使用了降维,因此在处理高维数据聚类时的复杂度比传统聚类算法好。

    谱聚类算法的主要缺点有:

    1)如果最终聚类的维度非常高,则由于降维的幅度不够,谱聚类的运行速度和最后的聚类效果均不好。

    2) 聚类效果依赖于相似矩阵,不同的相似矩阵得到的最终聚类效果可能很不同。
    
注:本博客转自:https://www.cnblogs.com/pinard/p/6221564.html

猜你喜欢

转载自blog.csdn.net/seekn/article/details/80029911
今日推荐