numpy和Matplotlib

numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算。这个库的前身是1995年就开始开发的一个用于数组运算的库。经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深度学习框架。

numpy在Linux下的安装已经在5.1.2中作为例子讲过,Windows下也可以通过pip,或者到下面网址下载:

Obtaining NumPy & SciPy libraries

基本类型(array)

array,也就是数组,是numpy中最基础的数据结构,最关键的属性是维度和元素类型,在numpy中,可以非常方便地创建各种不同类型的多维数组,并且执行一些基本基本操作,来看例子:

import numpy as np

a = np.array([[1, 5, 5, 2], [9, 6, 2, 8],   [3, 7, 9, 1]])

行方向比较第一列两个5取第一个1

第二列9 取0

第三列 9 取2

1 9 3

5 6 7

5 2 9

2 8 1

print(np.argmax(a, axis=1))

[1 0 2]

即返回一个折叠成一维的数组。但是该函数只能适用于numpy对象,即array或者mat,普通的list列表是不行的。

例子:

1、用于array对象

1
2
3
4
5
6
7
8
from  numpy  import  *
 
>>>a = array([[ 1 , 2 ],[ 3 , 4 ],[ 5 , 6 ]])   ###此时a是一个array对象
>>>a
array([[ 1 , 2 ],[ 3 , 4 ],[ 5 , 6 ]])
 
>>>a.flatten()
array([ 1 , 2 , 3 , 4 , 5 , 6 ])


首先声明两者所要实现的功能是一致的(将多维数组降位一维),两者的区别在于返回拷贝(copy)还是返回视图(view),numpy.flatten()返回一份拷贝,对拷贝所做的修改不会影响(reflects)原始矩阵,而numpy.ravel()返回的是视图(view,也颇有几分C/C++引用reference的意味),会影响(reflects)原始矩阵。

1. 两者的功能

>>> x = np.array([[1, 2], [3, 4]])
>>> x
array([[1, 2],
       [3, 4]])
>>> x.flatten()
array([1, 2, 3, 4])
>>> x.ravel()
array([1, 2, 3, 4])
                    两者默认均是行序优先
>>> x.flatten('F')
array([1, 3, 2, 4])
>>> x.ravel('F')
array([1, 3, 2, 4])

>>> x.reshape(-1)
array([1, 2, 3, 4])
>>> x.T.reshape(-1)
array([1, 3, 2, 4])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

2. 两者的区别

>>> x = np.array([[1, 2], [3, 4]])
>>> x.flatten()[1] = 100
>>> x
array([[1, 2],
       [3, 4]])            # flatten:返回的是拷贝
>>> x.ravel()[1] = 100
>>> x
array([[  1, 100],
       [  3,   4]])

注意到在导入numpy的时候,我们将np作为numpy的别名。这是一种习惯性的用法,后面的章节中我们也默认这么使用。作为一种多维数组结构,array的数组相关操作是非常丰富的:

对于一维的array所有Python列表支持的下标相关的方法array也都支持,所以在此没有特别列出。

既然叫numerical python,基础数学运算也是强大的:

对于array,默认执行对位运算。涉及到多个array的对位运算需要array的维度一致,如果一个array的维度和另一个array的子维度一致,则在没有对齐的维度上分别执行对位运算,这种机制叫做广播(broadcasting),言语解释比较难,还是看例子理解:

线性代数模块(linalg)

在深度学习相关的数据处理和运算中,线性代数模块(linalg)是最常用的之一。结合numpy提供的基本函数,可以对向量,矩阵,或是说多维张量进行一些基本的运算:

5.3.3 随机模块(random)

随机模块包含了随机数产生和统计分布相关的基本函数,Python本身也有随机模块random,不过功能更丰富,还是来看例子:

随机模块可以很方便地让我们做一些快速模拟去验证一些结论。比如来考虑一个非常违反直觉的概率题例子:一个选手去参加一个TV秀,有三扇门,其中一扇门后有奖品,这扇门只有主持人知道。选手先随机选一扇门,但并不打开,主持人看到后,会打开其余两扇门中没有奖品的一扇门。然后,主持人问选手,是否要改变一开始的选择?

这个问题的答案是应该改变一开始的选择。在第一次选择的时候,选错的概率是2/3,选对的概率是1/3。第一次选择之后,主持人相当于帮忙剔除了一个错误答案,所以如果一开始选的是错的,这时候换掉就选对了;而如果一开始就选对,则这时候换掉就错了。根据以上,一开始选错的概率就是换掉之后选对的概率(2/3),这个概率大于一开始就选对的概率(1/3),所以应该换。虽然道理上是这样,但是还是有些绕,要是通过推理就是搞不明白怎么办,没关系,用随机模拟就可以轻松得到答案:

5.4 Python的可视化包 – Matplotlib

Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型地2D图表和一些基本的3D图表。Matplotlib最早是为了可视化癫痫病人的脑皮层电图相关的信号而研发,因为在函数的设计上参考了MATLAB,所以叫做Matplotlib。Matplotlib首次发表于2007年,在开源和社区的推动下,现在在基于Python的各个科学计算领域都得到了广泛应用。Matplotlib的原作者John D. Hunter博士是一名神经生物学家,2012年不幸因癌症去世,感谢他创建了这样一个伟大的库。

安装Matplotlib的方式和numpy很像,可以直接通过Unix/Linux的软件管理工具,比如Ubuntu 16.04 LTS下,输入:

>> sudo apt install python-matplotlib

或者通过pip安装:

>> pip install matplotlib

Windows下也可以通过pip,或是到官网下载:

python plotting – Matplotlib 1.5.3 documentation

Matplotlib非常强大,不过在深度学习中常用的其实只有很基础的一些功能,这节主要介绍2D图表,3D图表和图像显示。

5.4.1 2D图表

Matplotlib中最基础的模块是pyplot。先从最简单的点图和线图开始,比如我们有一组数据,还有一个拟合模型,通过下面的代码图来可视化:

matplotlib和pyplot的惯用别名分别是mpl和plt,上面代码生成的图像如下:

基本的画图方法就是这么简单,如果想了解更多pyplot的属性和方法来画出风格多样的图像,可以参考官网:

pyplot – Matplotlib 1.5.3 documentation

Customizing matplotlib

点和线图表只是最基本的用法,有的时候我们获取了分组数据要做对比,柱状或饼状类型的图或许更合适:

在这段代码中又出现了一个新的东西叫做,一个用ax命名的对象。在Matplotlib中,画图时有两个常用概念,一个是平时画图蹦出的一个窗口,这叫一个figure。Figure相当于一个大的画布,在每个figure中,又可以存在多个子图,这种子图叫做axes。顾名思义,有了横纵轴就是一幅简单的图表。在上面代码中,先把figure定义成了一个一行两列的大画布,然后通过fig.add_subplot()加入两个新的子图。subplot的定义格式很有趣,数字的前两位分别定义行数和列数,最后一位定义新加入子图的所处顺序,当然想写明确些也没问题,用逗号分开即可。。上面这段代码产生的图像如下:

5.3.1 3D图表

Matplotlib中也能支持一些基础的3D图表,比如曲面图,散点图和柱状图。这些3D图表需要使用mpl_toolkits模块,先来看一个简单的曲面图的例子:

这个例子中先生成一个所有值均为0的复数array作为初始频谱,然后把频谱中央部分用随机生成,但同时共轭关于中心对称的子矩阵进行填充。这相当于只有低频成分的一个随机频谱。最后进行反傅里叶变换就得到一个随机波动的曲面,图像如下:

3D的散点图也是常常用来查看空间样本分布的一种手段,并且画起来比表面图和网线图更加简单,来看例子:

这个例子中,为了方便,直接先采样了一堆3维的正态分布样本,保证方向上的均匀性。然后归一化,让每个样本到原点的距离为1,相当于得到了一个均匀分布在球面上的样本。再接着把每个样本都乘上一个均匀分布随机数的开3次方,这样就得到了在球体内均匀分布的样本,最后根据判别平面3x+2y-z-1=0对平面两侧样本用不同的形状和颜色画出,图像如下:

5.3.1 图像显示

Matplotlib也支持图像的存取和显示,并且和OpenCV一类的接口比起来,对于一般的二维矩阵的可视化要方便很多,来看例子:

这段代码中第一个例子是读取一个本地图片并显示,第二个例子中直接把上小节中反傅里叶变换生成的矩阵作为图像拿过来,原图和经过乘以3再加4变换的图直接绘制了两个形状一样,但是值的范围不一样的图案。显示的时候imshow会自动进行归一化,把最亮的值显示为纯白,最暗的值显示为纯黑。这是一种非常方便的设定,尤其是查看深度学习中某个卷积层的响应图时。得到图像如下:

猜你喜欢

转载自blog.csdn.net/qq_40213457/article/details/80777662