奇异值分解SVD(singular value decomposition)

奇异值分解

SVD是一个很有用的矩阵因子化方法。
SVD提出的目的:任何一个 m × n m\times n m×n的矩阵都可以当作一个超椭圆(高维空间的椭圆),可以把它们当作单位球体S的像。
一个超椭圆可以通过将单位球型在正交方向 u 1 , u 2 , . . . , u m \mathbf{u_1},\mathbf{u_2},...,\mathbf{u_m} u1,u2,...,um通过缩放因子 σ 1 , . . . , σ m \sigma_1,..., \sigma_m σ1,...,σm,其中m是维度,如果在平面上m=2
在这里插入图片描述
通过上面这张图,可以做出下面的定义:

  1. singular value: σ 1 , . . . , σ n ≥ 0 \sigma_1,..., \sigma_n\geq 0 σ1,...,σn0一般假设 σ 1 ≥ σ 2 ≥ . . . \sigma_1 \geq \sigma_2 \geq ... σ1σ2...
  2. Light singular vectors: u 1 , u 2 , . . . , u n \mathbf{u_1},\mathbf{u_2},...,\mathbf{u_n} u1,u2,...,un,单位向量
  3. right singular vectors: v 1 , v 2 , . . . , v n \mathbf{v_1},\mathbf{v_2},...,\mathbf{v_n} v1,v2,...,vn是ui的逆向满足 A v i = σ i u i Av_i = \sigma_i u_i Avi=σiui
    这个名字中左和右来自svd的公式。
    把上面的公式矩阵化,可以得到:
    A V = U ^ Σ ^ AV = \hat U \hat \Sigma AV=U^Σ^
    在这里面
  4. Σ ^ ∈ R n × n \hat{\Sigma}\in\mathbb{R}^{n\times n} Σ^Rn×n是一个非负数对角矩阵
  5. U ^ ∈ R m × n \hat{U}\in\mathbb{R}^{m\times n} U^Rm×n是一个列正交矩阵
  6. V ∈ R n × n V\in\mathbb{R}^{n\times n} VRn×n是一个列正交矩阵
    因此V是个正交矩阵,因为它是基向量,因此我们就可以得到reduced SVD:
    A = U ^ Σ ^ V T A = \hat U \hat \Sigma V^T A=U^Σ^VT
    正如QR分解一样,可以把扩充 U ^ \hat U U^的列使得 U ∈ R m × m U\in\mathbb{R}^{m\times m} URm×m
    然后需要给 Σ ^ \hat{\Sigma} Σ^添加一些为为0的行,使得可以沉默掉新添加到U中的随机列,这样就得到了完全SVD
    A = U Σ V T A = U \Sigma V^T A=UΣVT
    对比reduced和full
    在这里插入图片描述
    现在重新考虑当时把球型变为超椭圆型的目的。
    1 V T V^T VT是球型S
    2 Σ \Sigma Σ拉伸球型得到椭球形
    3 U U U旋转投射而不改变形状

通过SVD可以知道一些矩阵性质

  1. A的秩为r,也就是非零奇异值的个数
    proof:U和V是满秩的,所以rank(A) = rank( Σ \Sigma Σ)
  2. image(A) = span{ u 1 , u 2 , . . . , u r \mathbf{u_1},\mathbf{u_2},...,\mathbf{u_r} u1,u2,...,ur}
    null(A) = span{ v r + 1 , . . . , v n \mathbf{v_{r+1}},...,\mathbf{v_n} vr+1,...,vn}
  3. ∣ ∣ A ∣ ∣ 2 = σ 1 ||A||_2=\sigma_1 ∣∣A2=σ1
    proof: ∣ ∣ A ∣ ∣ 2 ≡ m a x ∣ ∣ V ∣ ∣ 2 = 1 ||A||_2 \equiv max_{||V||_2=1} ∣∣A2max∣∣V2=1||Av||_2
  4. A的奇异值是AAT的特征值的平方根。
    根据上面的性质:可以知道SVD的两种应用

长方形矩阵的条件数

K ( A ) = ∣ ∣ A ∣ ∣ ∣ ∣ A + ∣ ∣ K(A)=||A||||A^+|| K(A)=∣∣A∣∣∣∣A+∣∣
其中 A + A^+ A+是伪逆

  • ∣ ∣ A ∣ ∣ 2 = σ m a x ||A||_2 = \sigma_{max} ∣∣A2=σmax
  • ∣ ∣ A + ∣ ∣ 2 = 1 σ m i n ||A^+||_2 = \frac{1}{\sigma_{min}} ∣∣A+2=σmin1
    所以 K ( A ) = σ m a x σ m i n K(A)=\frac{\sigma_{max}}{\sigma_{min}} K(A)=σminσmax

低秩近似

把SVD变为
A = ∑ j = 1 r σ j u j v j T A = \sum^r_{j=1}\sigma_j u_j v_j^T A=j=1rσjujvjT
每个 u j v j T u_j v_j^T ujvjT都是一个秩为1的矩阵
Theorem:
对于 0 ≤ v ≤ r 0\leq v \leq r 0vr,让 A v = ∑ j = 1 v σ j u j v j T Av = \sum^v_{j=1}\sigma_ju_jv_j^T Av=j=1vσjujvjT
所以
∣ ∣ A − A v ∣ ∣ 2 = inf ⁡ B ∈ R m × n , r a n k ( B ) ≤ v ∣ ∣ A − B ∣ ∣ 2 ||A-Av||_2 = \inf_{B\in \mathbb{R}^{m\times n}, rank(B)\leq v}{||A-B||_2} ∣∣AAv2=BRm×n,rank(B)vinf∣∣AB2
同样的也可以在Frobenius norm中证明,这个理论说明SVD是压缩矩阵的一个好的方法。

猜你喜欢

转载自blog.csdn.net/qq_42725437/article/details/134654975
今日推荐