YOLOV5 TensorRT BatchedNMS

修改yolov5的detect层一文中,介绍了对detect层的轻量化改造,以提高模型服务的效率。在Triton Pipelines部署yolov5 service一文中利用改造的模型文件分别通过BLS和Ensemble两种方式部署了Triton Pipelines。但是Pipelines中的infer engine和nms始终是两个相对独立的step,由于nms是通过python backend来完成的,无论是BLS还是Ensemble都在数据传输方面存在一些限制。

本文利用onnx_graphsurgeon改造原生detect层的输出张量,对接通过cuda实现的TensorRT batchedNMSPlugin,将yolov5的nms集成到tensorrt engine中,避免部分场景下device to host的数据拷贝,提高整体计算性能。

相关代码链接

0. 前置条件

# clone ultralytics repo
git clone -b v6.1 https://github.com/ultralytics/yolov5.git
# clone this repo
git clone <this repo>
cp -r <this repo>/* yolov5/

1. 具体步骤

修改yolov5的detect层#3-具体步骤大致类似,都是遵循:

  • 修改detect层的forward函数
  • 导出.onnx文件
  • 转换为trt engine

的步骤。只不过这里需要对导出onnx文件的函数进行一些修改,新增一个BatchedNMSDynamic_TRT node并追加到原始graph的末尾, 并按照TensorRT batchedNMSPlugin的输入格式调整node的属性

1.1 修改前后

  • infer模式下forward函数原始输出格式

    • squeezed boxes and classes:

      [batch_size, number_boxes, box_xywh + c + number_classes] = [batch_size, 25200, 85]
      

  • 修改后的输出格式

    • boxes

      [batch_size, number_boxes, 1, x1y1x2y2]
      
    • cls_conf

      [batch_size, number_boxes, number_classes]
      

      请添加图片描述

      根据batchedNMSPlugin.cpp源码中的注释,boxes的输入形状为[batch_size, num_boxes, num_classes, 4] or [batch_size, num_boxes, 1, 4],但batchedNMSPlugin的文档没有详细说明这二者的差别,在
      efficientNMSPlugin的文档里可以找到相关的解释:

      The boxes input can have 3 dimensions in case a single box prediction is produced for all classes (such as in EfficientDet or SSD), or 4 dimensions when separate box predictions are generated for each class (such as in FasterRCNN), in which case number_classes >= 1 and must match the number of classes in the scores input. The final dimension represents the four coordinates that define the bounding box prediction.

      由于使用的是yolov5, 所以不会对每个类别去生成bouding box, 所以boxes的输入形状应该为[batch_size, num_boxes, 1, 4]

1.2 改造detect层

yolov5 Detect层forward函数的输出改成TensorRT batchedNMSPlugin的输入格式

def forward(self, x):
    z = []  # inference output
    for i in range(self.nl):
        x[i] = self.m[i](x[i])  # conv
        bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
        x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

        if not self.training:  # inference
            if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

            y = x[i].sigmoid()
            if self.inplace:
                y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
            else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                # custom output >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
                conf = y[..., 4:]
                xmin = xy[..., 0:1] - wh[..., 0:1] / 2
                ymin = xy[..., 1:2] - wh[..., 1:2] / 2
                xmax = xy[..., 0:1] + wh[..., 0:1] / 2
                ymax = xy[..., 1:2] + wh[..., 1:2] / 2
                obj_conf = conf[..., 0:1]
                cls_conf = conf[..., 1:]
                cls_conf *= obj_conf 
                # y = torch.cat((xy, wh, y[..., 4:]), -1)
                y = torch.cat((xmin, ymin, xmax, ymax, cls_conf), 4)
            # z.append(y.view(bs, -1, self.no))
            z.append(y.view(bs, -1, self.no - 1))
    
    z = torch.cat(z, 1)
    bbox = z[..., 0:4].view(bs, -1, 1, 4)
    cls_conf = z[..., 4:]
    
    return bbox, cls_conf
    # return x if self.training else (torch.cat(z, 1), x)
    # custom output >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

1.3 修改export_onnx

export onnx时,修改output,满足TensorRT batchedNMSPlugin的输入格式

这里介绍一下关键点,详细代码见export.py中的export_onnx函数

  • onnx simplify的时候避免导出成static shape

    model_onnx, check = onnxsim.simplify(
        model_onnx,
        dynamic_input_shape=dynamic
        # 必须注释
        #input_shapes={'images': list(im.shape)} if dynamic else None
        )
    
  • 利用onnx-graphsurgeon创建一个BatchedNMSDynamic_TRT node,并添加到原有计算图的末尾

    # add batch NMS:
    yolo_graph = onnx_gs.import_onnx(model_onnx)
    box_data = yolo_graph.outputs[0]
    cls_data = yolo_graph.outputs[1]
    nms_out_0 = onnx_gs.Variable(
        "BatchedNMS",
        dtype=np.int32
    )
    nms_out_1 = onnx_gs.Variable(
        "BatchedNMS_1",
        dtype=np.float32
    )
    nms_out_2 = onnx_gs.Variable(
        "BatchedNMS_2",
        dtype=np.float32
    )
    nms_out_3 = onnx_gs.Variable(
        "BatchedNMS_3",
        dtype=np.float32
    )
    nms_attrs = dict()
    # ........
    
    nms_plugin = onnx_gs.Node(
        op="BatchedNMSDynamic_TRT",
        name="BatchedNMS_N",
        inputs=[box_data, cls_data],
        outputs=[nms_out_0, nms_out_1, nms_out_2, nms_out_3],
        attrs=nms_attrs
    )
    yolo_graph.nodes.append(nms_plugin)
    yolo_graph.outputs = nms_plugin.outputs
    yolo_graph.cleanup().toposort()
    model_onnx = onnx_gs.export_onnx(yolo_graph)
    
  • 依次导出onnx和tensorrt engine

    # export onxx
    python export.py --weights yolov5s.pt --include onnx --simplify --dynamic 
    
    # export trt engine
    /usr/src/tensorrt/bin/trtexec  \
    --onnx=yolov5s.onnx \
    --minShapes=images:1x3x640x640 \
    --optShapes=images:1x3x640x640 \
    --maxShapes=images:1x3x640x640 \
    --workspace=4096 \
    --saveEngine= yolov5s_opt1_max1_fp16.engine \
    --shapes=images:1x3x640x640 \
    --verbose \
    --fp16 \
    > result-FP16-BatchedNMS.txt
    

2. 性能测试

2.1 COCO17 validation数据集测试

对比测试infer + nms的耗时

  • original yolo

    python detect.py --weight original-yolov5s-fp16.engine --half --img 640  --source </path/to/coco/images/val2017/> --device 0 
    

    Speed: 0.8ms pre-process, 4.4ms inference, 2.2ms NMS per image at shape (1, 3, 640, 640)

  • batchedNMSPlugin

    python trt_infer.py --model yolov5s_opt1_max1_fp16.engine --input_images_folder </path/to/coco/images/val2017/> --output_images_folder <output_tempfolder> --input_size 640
    

    infer + nms:
    Inference: 5.4 ms per image at shape (1, 3, 640, 640)

2.2 trtexec 测试

trtexec是本地测试结果,batch为1的情况下,整体差别不太大,将nms集成到trt engine后,Output的张量变小了很多,可以降低Device to Host的数据传输时间,代价是GPU Compute的时间增加

metrics BatchedNMSDynamic_TRT egine
infer+nms
ultralytics engine
only infer
Latency 3.97021 ms 4.08145 ms
End-to-End Host Latency 6.70715 ms 4.73285 ms
Enqueue Time 1.27597 ms 0.95929 ms
H2D Latency 0.563791 ms 0.316406 ms
GPU Compute Time 3.45068 ms 2.41992 ms
D2H Latency 0.0100889 ms 1.34198 ms

REFERENCES

猜你喜欢

转载自blog.csdn.net/weixin_41817841/article/details/127598400