视觉slam14讲第六章代码阅读

摘录自高翔视觉slam14讲第6章《非线性优化》

#include <iostream>
#include <g2o/core/g2o_core_api.h>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/core/optimization_algorithm_dogleg.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <Eigen/Core>
#include <opencv2/core/core.hpp>
#include <cmath>
#include <chrono>

using namespace std;

// 曲线模型的顶点,模板参数:优化变量维度和数据类型
class CurveFittingVertex : public g2o::BaseVertex<3, Eigen::Vector3d> {
    
    
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW

  // 重置
  virtual void setToOriginImpl() override {
    
    
    _estimate << 0, 0, 0;
  }

  // 更新
  virtual void oplusImpl(const double *update) override {
    
    
    _estimate += Eigen::Vector3d(update);
  }

  // 存盘和读盘:留空
  virtual bool read(istream &in) {
    
    }

  virtual bool write(ostream &out) const {
    
    }
};

// 误差模型 模板参数:观测值维度,类型,连接顶点类型
class CurveFittingEdge : public g2o::BaseUnaryEdge<1, double, CurveFittingVertex> {
    
    
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW

  CurveFittingEdge(double x) : BaseUnaryEdge(), _x(x) {
    
    }

  // 计算曲线模型误差
  virtual void computeError() override {
    
    
    const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
    const Eigen::Vector3d abc = v->estimate();
    _error(0, 0) = _measurement - std::exp(abc(0, 0) * _x * _x + abc(1, 0) * _x + abc(2, 0));
  }

  // 计算雅可比矩阵
  virtual void linearizeOplus() override {
    
    
    const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
    const Eigen::Vector3d abc = v->estimate();
    double y = exp(abc[0] * _x * _x + abc[1] * _x + abc[2]);
    _jacobianOplusXi[0] = -_x * _x * y;
    _jacobianOplusXi[1] = -_x * y;
    _jacobianOplusXi[2] = -y;
  }

  virtual bool read(istream &in) {
    
    }

  virtual bool write(ostream &out) const {
    
    }

public:
  double _x;  // x 值, y 值为 _measurement
};

int main(int argc, char **argv) {
    
    
  double ar = 1.0, br = 2.0, cr = 1.0;         // 真实参数值
  double ae = 2.0, be = -1.0, ce = 5.0;        // 估计参数值
  int N = 100;                                 // 数据点
  double w_sigma = 1.0;                        // 噪声Sigma值
  double inv_sigma = 1.0 / w_sigma;
  cv::RNG rng;                                 // OpenCV随机数产生器

  vector<double> x_data, y_data;      // 数据
  for (int i = 0; i < N; i++) {
    
    
    double x = i / 100.0;
    x_data.push_back(x);
    y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
  }

  // 构建图优化,先设定g2o
  typedef g2o::BlockSolver<g2o::BlockSolverTraits<3, 1>> BlockSolverType;  // 每个误差项优化变量维度为3,误差值维度为1
  typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型

  // 梯度下降方法,可以从GN, LM, DogLeg 中选
  auto solver = new g2o::OptimizationAlgorithmGaussNewton(
    g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
  g2o::SparseOptimizer optimizer;     // 图模型
  optimizer.setAlgorithm(solver);   // 设置求解器
  optimizer.setVerbose(true);       // 打开调试输出

  // 往图中增加顶点
  CurveFittingVertex *v = new CurveFittingVertex();
  v->setEstimate(Eigen::Vector3d(ae, be, ce));
  v->setId(0);
  optimizer.addVertex(v);

  // 往图中增加边
  for (int i = 0; i < N; i++) {
    
    
    CurveFittingEdge *edge = new CurveFittingEdge(x_data[i]);
    edge->setId(i);
    edge->setVertex(0, v);                // 设置连接的顶点
    edge->setMeasurement(y_data[i]);      // 观测数值,在main函数里面已经存入vector当中了
    edge->setInformation(Eigen::Matrix<double, 1, 1>::Identity() * 1 / (w_sigma * w_sigma)); // 信息矩阵:协方差矩阵之逆
    optimizer.addEdge(edge);
  }

  // 执行优化
  cout << "start optimization" << endl;
  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  optimizer.initializeOptimization();
  optimizer.optimize(10);//10次迭代
  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);//计算优化所消耗的时间大小
  cout << "solve time cost = " << time_used.count() << " seconds. " << endl;

  // 输出优化值
  Eigen::Vector3d abc_estimate = v->estimate();
  cout << "estimated model: " << abc_estimate.transpose() << endl;

  return 0;
}

猜你喜欢

转载自blog.csdn.net/weixin_42001184/article/details/118916938
今日推荐