ICCV 2023 | 清华&西电提出HumanMAC:人体动作预测新范式

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【计算机视觉】微信交流群

作者:Evan CHEN |  已授权转载(源:知乎)编辑:CVer

https://zhuanlan.zhihu.com/p/643860730

我们一篇关于人体动作预测的研究工作被计算机视觉国际顶级会议ICCV 2023录用,代码[1]开源,demo讲解[2]、项目主页[3]、中文文档[4]开放。

9574c9027c7aa853eefb6ece8c43669e.png

HumanMAC: Masked Motion Completion for Human Motion Prediction

主页:https://lhchen.top/Human-MAC

论文:https://arxiv.org/abs/2302.03665

代码:https://github.com/LinghaoChan/HumanMAC

人体动作预测是计算机视觉和图形学中的一个经典问题,旨在提升预测结果的多样性、准确性,并在自动驾驶、动画制作等多领域有非常多具体的应用。本研究梳理了今年来大家对于该问题的建模方式,认为以往的大多数工作对于动作预测任务都是使用一种encoding-decoding的范式。这类范式大多是将观测帧编码进隐空间,然后从隐空间解码出预测帧。我们认为这种方式存在三个缺点:

  • 大多数SOTA的方法需要多个loss作为目标约束,需要精细化地调节多个loss之间的权重,需要极其繁重的调参工程

  • 大多数SOTA的方法需要多阶段训练,特别是需要预训练encoder和decoder,这使得预测结果非常依赖于预训练的质量

  • 对于这些方法来说,很难实现不同类别运动的切换,例如从“WalkDog”到“Sitting”的切换,这对于结果多样性至关重要。出现这个现象的原因是这些方法所使用的训练数据包括很少这样的切换。

为克服上述问题,我们提出了一种建模动作预测问题的全新范式:掩码动作补全。如图1(b)所示,我们认为预测问题就是一种特殊的补全问题,可以借助diffusion model的补全能力解决上述挑战。如果使用这种范式,我们是需要一个loss、训练一个阶段就可以实现预测,可以说是“大道至简”。并且由于我们建模了全局的动作,模型很容易学习到平滑性,就能自动实现动作的切换。

4a6f118f3eb103d7ceabf212ab6f6955.jpeg

encoding-decoding方式与掩码运动补全的比较。(a)encoding-decoding的方法将观测帧显式地编码到隐空间,然后将隐空间变量解码为预测结果。(b)HumanMAC在训练阶段由噪声生成运动。在推理阶段完成补全动作的任务。

为了解决动作抖动等问题,我们借鉴了以往工作在频域建模的思路[5][6],通过DCT变换,对数据在频域进行训练。也就是说,我们的diffusion model是动作频谱的生成模型,在输出结果的时候只需要做iDCT变换即可复原动作。为此,我们设计了一个补全算法:DCT-Completion。算法流程和示意图如下。

f8e4f67feaa9199bed28e7c296725b16.jpeg 76435a89a9b42ede50c889866285d676.jpeg

由于动作预测的问题只是一个特殊的掩码补全问题,我们可以灵活地使用mask实现各种“花式”可控动作补全:

  • 动作切换

82eadf4302a18a36454529cc52f01a33.jpeg

动作切换
  • 特定躯体可控动作编辑

8ee8194d2089ae24631a98238b438dbc.jpeg

特定躯体可控动作编辑

在量化指标上我们仅仅通过一个loss、一阶段训练就可以和以往的工作不相上下了(我们还比较了最新的arxiv算法)。多样性的指标逊色于baseline方法的原因,主要来自于baseline方法生成的“多样”结果存在大量的failure cases,详情可以见论文和demo中的可视化结果比较。

e532444a5bc9867a64f4200b44f591d5.jpeg

主实验结果

在正文中,我们对网络结构、DCT设计、频谱频段选择、网络结构、采样步数、噪声建模等进行了精细的消融验证。同时,由于以往研究的codebase计算效率太低,我们重新优化了评估代码并开源(加速上千倍),为后续研究者提供便利。

为了探究模型的泛化性能,我们还做了在H3.6M数据训练,在AMASS上做zero-shot预测实验的研究,效果也特别好。

2ad7c576960d6f476fb16320388369fe.jpeg

AMASS上的zero-shot预测实验

这是我们基于对动作生成任务全新理解,在动作预测问题上的一个探索性工作。我们的大量实验表明这种框架的扩展性非常好,还有很大的扩展空间,欢迎大家关注我们的后续工作。

该研究是我和原来本科的同学多次交流获得的灵感,在此也感谢一下母校。衷心感谢所有合作者,特别是Xiaobo全方位的指导,让我获益匪浅(^_^)。P.S.: 该工作做完刚刚挂出arxiv的时候就有很多工业界的同行发邮件来交流,甚至希望部署到他们的产品线中,给予了我们极大的鼓舞,在此也向他们表示感谢。

联系:thu DOT lhchen AT gmail DOT com。

参考

  1. ^https://github.com/LinghaoChan/HumanMAC

  2. ^https://www.youtube.com/watch?v=vfde9GdUHBs

  3. ^https://lhchen.top/Human-MAC/

  4. ^https://github.com/LinghaoChan/HumanMAC/blob/main/doc-CN

  5. ^Sebastian Starke, Ian Mason, and Taku Komura. Deepphase: Periodic autoencoders for learning motion phase manifolds. ACM Transactions on Graphics (TOG), 41(4):1–13, 2022. 14.

  6. ^Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong Li. Learning trajectory dependencies for human motion pre- diction. In ICCV, pages 9489–9497, 2019.

 
  

点击进入—>【计算机视觉】微信交流群

ICCV / CVPR 2023论文和代码下载

 
  

后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:ICCV2023,即可下载ICCV 2023论文和代码开源的论文合集
目标检测和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer333,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!

▲扫码进星球
▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看d49413a89fac28a100b968ce03655894.gif

猜你喜欢

转载自blog.csdn.net/amusi1994/article/details/131757718