论文阅读笔记: MobileNet

1. MobileNet V1

Howard, Andrew G., et al. “Mobilenets: Efficient convolutional neural networks for mobile vision applications.” arXiv preprint arXiv:1704.04861 (2017).

本文主要提出了一种深度可分离卷积(depthwise separable convolutions)用于替换传统卷积。将传统的卷积分解为了两步:用分组卷积来提取输入每个通道的特征图的特征,再用1x1卷积融合通道维的特征。我们将第一步称为Depthwise convolution,第二步称为Pointwise convolution

在谷歌后面的Xception中也采用了深度可分离卷积,实验证明了这种分解传统卷积的有效性。

那么深度可分离卷积是如何减少参数量的呢,通过一个例子可以来说明:
假设输入一个正常卷积的特征图的形状是 M × H × W M \times H \times W M×H×W,输出的通道数为 N N N,采用 K × K K \times K K×K的卷积核需要的参数量为: M × K × K × N M \times K \times K \times N M×K×K×N
如果采用深度可分离卷积,那么参数量为: M × K × K + M × 1 × 1 × N M \times K \times K + M \times 1 \times 1 \times N M×K×K+M×1×1×N
显然采用了深度可分离卷积的设计能够大大减少参数量。
在这里插入图片描述
在这里插入图片描述
文章中也给出了每层参与计算的比例,可以看到1x1卷积参与了大部分的计算。

深度可分离卷积代码如下:

class DwsConvBlock(nn.Module):
    """
    Depthwise separable convolution block with BatchNorms and activations at each convolution layers
    """
    def __init__(self, in_channels, out_channels, stride=1):
        super(DwsConvBlock, self).__init__()
        self.conv3x3 = nn.Conv2d(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=in_channels
        )  # depthwise conv3x3, 改变形状不改变通道
        # 每个卷积操作后紧跟bn和relu
        self.bn1 = nn.BatchNorm2d(num_features=in_channels)
        self.relu1 = nn.ReLU(inplace=True)

        self.conv1x1 = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1
        )  # pointwise conv1x1,改变通道数

        self.bn2 = nn.BatchNorm2d(num_features=out_channels)
        self.relu2 = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv3x3(x)
        x = self.bn1(x)
        x = self.relu1(x)

        x = self.conv1x1(x)
        x = self.bn2(x)
        x = self.relu2(x)

        return x

最后用深度可分离卷积构建MobileNet,文中的网络结构如图所示:
在这里插入图片描述

class MobileNet(nn.Module):

    def __init__(self, in_channels=1, in_size=(224, 224), num_classes=10, version="orig"):
        super(MobileNet, self).__init__()
        if version == "orig":
            channels = [[32], [64], [128, 128], [256, 256], [512, 512, 512, 512, 512, 512], [1024, 1024]]
            first_stage_stride = False
        elif version == "fd":
            channels = [[32], [64], [128, 128], [256, 256], [512, 512, 512, 512, 512, 1024]]
            first_stage_stride = True

        self.in_size = in_size
        self.num_classes = num_classes
        self.features = nn.Sequential()
        # 初始化层
        self.features.add_module("init_block", nn.Conv2d(in_channels=in_channels,
                                                         out_channels=channels[0][0],
                                                         kernel_size=3,
                                                         stride=2))
        in_channels = channels[0][0]
        for i, channels_per_stage in enumerate(channels[1:]):
            stage = nn.Sequential()
            for j, out_channels in enumerate(channels_per_stage):
                stride = 2 if (j == 0) and ((i != 0) or first_stage_stride) else 1  # 是否下采样。一般每个stage的第一个block都要做一次下采样
                stage.add_module("Unit{}".format(j + 1), DwsConvBlock(in_channels=in_channels,
                                                                      out_channels=out_channels,
                                                                      stride=stride))
                in_channels = out_channels
            self.features.add_module("stage{}".format(i + 1), stage)

        self.features.add_module("final_pool", nn.AvgPool2d(kernel_size=7, stride=1))
        self.output = nn.Linear(in_features=in_channels,
                                out_features=num_classes)

    def _init_params(self):
        for name, module in self.named_modules():
            if isinstance(module, nn.Conv2d):
                nn.init.kaiming_normal_(module.weight)
            if isinstance(module, nn.BatchNorm2d):
                nn.init.constant_(module.weight, 1)
                nn.init.constant_(module.bias, 0)

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.shape[0], -1)
        x = self.output(x)
        return x

2. MobileNet V2

Sandler, Mark, et al. “Mobilenetv2: Inverted residuals and linear bottlenecks.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

这篇文章是MobileNet V1的延续,它提出了一种倒残差结构(inverted residual structure)以及揭示了非线性激活函数会导致低维信息的丢失,因此提出了一种采用线性激活函数的倒残差块。

当输入输入至一个卷积层之后会输出多通道的特征图,通常称多通道为manifolds of interest,然而并不是所有的通道都是重要的,起作用的往往只是那么几个,GhostNet也是基于这种想法设计的。因此,生成大量的通道看起来是非常冗余的,因此在设计卷积块时通常是先对输入降维再升维,中间再经过一个非线性的激活函数,例如Relu。

在这里插入图片描述
然而,低维的信息在经过非线性激活函数之后会有信息的丢失,如上图所示。

为了保证信息的完整,MobileNetV2在每个block后采用线性输出,并且设计了倒残差块,传统的残差块是两头大中间小,而为了能够捕捉更多的信息,倒残差块采用了两头小中间大的设计。
在这里插入图片描述

代码如下:

class InvertedLinearBlock(nn.Module):

    def __init__(self, in_channels, out_channels, expansion=1, stride=1):
        super(InvertedLinearBlock, self).__init__()
        self.residual = (in_channels == out_channels) and (stride == 1)  #输入和输出形状相等时做残差连接
        mid_channels = in_channels * 6 if expansion else in_channels  # 是否中间扩大通道数

        self.conv1 = nn.Conv2d(in_channels=in_channels,
                               out_channels=mid_channels,
                               kernel_size=1)
        self.bn1 = nn.BatchNorm2d(num_features=mid_channels)
        self.activate1 = nn.ReLU6(inplace=True)

        self.conv2 = nn.Conv2d(in_channels=mid_channels,
                               out_channels=mid_channels,
                               kernel_size=3,
                               stride=stride,
                               padding=1,
                               groups=mid_channels)
        self.bn2 = nn.BatchNorm2d(num_features=mid_channels)
        self.activate2 = nn.ReLU6(inplace=True)

        self.conv3 = nn.Conv2d(in_channels=mid_channels,
                               out_channels=out_channels,
                               kernel_size=1)
        # 最后一层没有激活函数

    def forward(self, x):
        if self.residual:
            identity = x
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.activate1(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.activate2(x)
        x = self.conv3(x)
        if self.residual:
            x = x + identity
        return x

在这里插入图片描述
根据文章中的结构进行搭建MobileNetV2:

class MobileNetV2(nn.Module):

    def __init__(self, in_channels=1, init_block_channels=32, final_block_channels=1280, num_classes=10, in_size=(224, 224)):
        super(MobileNetV2, self).__init__()
        self.in_size = in_size
        self.num_classes = num_classes
        self.features = nn.Sequential()
        self.features.add_module("init_block", nn.Sequential(nn.Conv2d(in_channels=in_channels,
                                                         out_channels=init_block_channels,
                                                         stride=2,
                                                         kernel_size=3),
                                                            nn.ReLU6(inplace=True)))
        in_channels = init_block_channels
        channels_per_layers = [16, 24, 32, 64, 96, 160, 320]
        layers = [1, 2, 3, 4, 3, 3, 1]
        downsample = [0, 1, 1, 1, 0, 1, 0]
        from functools import reduce
        channels = reduce(
            lambda x, y: x + [[y[0]] * y[1]] if y[2] != 0 else x[:-1] + [x[-1] + [y[0]] * y[1]],
            zip(channels_per_layers, layers, downsample),
            [[]])

        for i, channels_per_stage in enumerate(channels):
            stage = nn.Sequential()
            for j, out_channels in enumerate(channels_per_stage):
                stride = 2 if (j == 0) and (i != 0) else 1
                expansion = (i != 0) or (j != 0)
                stage.add_module("unit{}".format(j + 1), InvertedLinearBlock(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    stride=stride,
                    expansion=expansion
                ))
                in_channels = out_channels
            self.features.add_module("stage{}".format(i + 1), stage)

        self.features.add_module("final_block", nn.Sequential(
            nn.Conv2d(in_channels=in_channels,
                      out_channels=final_block_channels,
                      kernel_size=1),
            nn.ReLU6(inplace=True)
        ))

        in_channels = final_block_channels
        self.features.add_module("final_pool", nn.AvgPool2d(
            kernel_size=7,
            stride=1
        ))

        self.output = nn.Conv2d(
            in_channels=in_channels,
            out_channels=num_classes,
            kernel_size=1,
            bias=False
        )
        self._init_params()

    def _init_params(self):
        for name, module in self.named_modules():
            if isinstance(module, nn.Conv2d):
                nn.init.kaiming_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

    def forward(self, x):
        x = self.features(x)
        x = self.output(x)
        x = x.view(x.shape[0], -1)
        return x

3. MobileNet V3

Howard, Andrew, et al. “Searching for mobilenetv3.” Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.

本文主要采用了神经网络搜索的算法来优化超参数的设置,并且提出了一种新的非线性激活函数swish,表达式如下:
s w i s h ( x ) = x ⋅ σ ( x ) swish(x)=x \cdot \sigma(x) swish(x)=xσ(x),为了进一步降低sigmoid函数的计算复杂度,作者提出了一种近似的函数来替代它:
h s w i s h ( x ) = x R e L U 6 ( x + 3 ) 6 hswish(x)=x \frac{ReLU6(x+3)}{6} hswish(x)=x6ReLU6(x+3)
在这里插入图片描述
此外,作者对最后的stage进行了改进,在之前的MobileNet V2中,最后会采用一个1x1卷积对通道升维,但是这带来了巨大的开销,所以作者将平均池化放到了前面去做,这样减少了不少计算量。

对于倒残差模块,作者并没有做太多改进,只是加了一个SE块对通道做了一个注意力来提升预测的精度。
在这里插入图片描述
接下来我们把改进后的倒残差块代码给出:

class MobileNetV3Unit(nn.Module):

    def __init__(self, in_channels, out_channels, exp_channels, stride,
                 use_kernel3, activation, use_se):
        super(MobileNetV3Unit, self).__init__()
        assert exp_channels >= out_channels
        self.residual = (in_channels == out_channels) and (stride == 1)
        self.use_se = use_se
        self.use_exp_conv = exp_channels != out_channels
        mid_channels = exp_channels

        if self.use_exp_conv:
            self.exp_conv = conv1x1_block(
                in_channels=in_channels,
                out_channels=exp_channels,
                activation=activation
            )
        if use_kernel3:
            self.conv1 = dwconv3x3_block(
                in_channels=mid_channels,
                out_channels=mid_channels,
                stride=stride,
                activation=activation
            )
        else:
            self.conv1 = dwconv5x5_block(
                in_channels=mid_channels,
                out_channels=mid_channels,
                stride=stride,
                activation=activation
            )
        if use_se:
            self.se = SEBlock(
                channels=mid_channels,
                reduction=4,
                round_mid=True,
                out_activation="hsigmoid"
            )
        self.conv2 = conv1x1_block(
            in_channels=mid_channels,
            out_channels=out_channels,
            activation=None,
        )

    def forward(self, x):
        if self.residual:
            identity = x
        if self.use_exp_conv:
            x = self.exp_conv(x)
        x = self.conv1(x)
        if self.use_se:
            x = self.se(x)
        x = self.conv2(x)
        if self.residual:
            x = x + identity
        return x

还有最后一部分的改进:

class MobileNetV3FinalBlock(nn.Module):

    def __init__(self, in_channels, out_channels, use_se):
        super(MobileNetV3FinalBlock, self).__init__()
        self.use_se = use_se

        self.conv = conv1x1_block(in_channels=in_channels,
                                  out_channels=out_channels,
                                  activation="hswish")
        if self.use_se:
            self.se = SEBlock(channels=out_channels,
                              reduction=4,
                              round_mid=True,
                              out_activation="hsigmoid")
    def forward(self, x):
        x = self.conv(x)
        if self.use_se:
            x = self.se(x)
        return x

class MobileNetV3Classifier(nn.Module):
    
    def __init__(self, in_channels, out_channels, mid_channels, dropout):
        super(MobileNetV3Classifier, self).__init__()
        self.use_dropout = (dropout != 0.0)

        self.conv1 = conv1x1_block(in_channels=in_channels,
                                   out_channels=mid_channels,
                                   activation="hswish",
                                   use_bn=False)
        if self.use_dropout:
            self.dropout = nn.Dropout(p=dropout)
        self.conv2 = conv1x1_block(in_channels=mid_channels,
                                   out_channels=out_channels,
                                   activation=None,
                                   bias=True,
                                   use_bn=False)

    def forward(self, x):
        x = self.conv1(x)
        if self.use_dropout:
            x = self.dropout(x)
        x = self.conv2(x)
        return x

猜你喜欢

转载自blog.csdn.net/loki2018/article/details/124841911
今日推荐