数学建模学习(90):Jaya优化算法对多元函数寻优

一、算法介绍

算法步骤:

  1. 首先初始化种群个体数量,确定每个个体长度以及终止判据
  2. 找到当前种群下的最优个体 best 和最差个体 worst
  3. 遍历所有个体,根据公式(1)更新个体参数
    在这里插入图片描述

其中,i,j,k分别代表迭代代数,个体的某变量,种群中某个体。该公式是Jaya算法的核心

  1. 判断更新后的个体是否优于更新前的个体,若是,则更新个体,否则保留原个体到下一代
  2. 判断当前最优个体是否满足终止判据,若是则结束程序,否则遍历步骤2-4

二、 案例实现(一)

2.1 目标函数

第一步:导入模块

import numpy as np

# Jaya
from pyMetaheuristic.algorithm import victory
from pyMetaheuristic.utils import graphs

第二步:目标函数设置

def easom(variables_values = [0, 0]):
    x1, x2     = variables_values
    func_value = -np.cos(x1) * np.cos(x2) * np.exp(-(x1 - np.pi) ** 2 - (x2 - np.pi) ** 2)
    return func_value

plot_parameters = {
    
    
    'min_values': (-5, -5),
    'max_values': (5, 5),
    'step': (0.1, 0.1),
    'solution': [],
    'proj_view': '3D',
    'view': 'notebook'
}
graphs.plot_single_function(target_function = easom, **plot_parameters)

如下:
在这里插入图片描述

2.2 算法实现

第三步:设置算法参数

# jaya - Parameters
parameters = {
    
    
    # 该参数50左右
    'size': 50,
    'min_values': (-5, -5),
    'max_values': (5, 5),
    # 迭代次数
    'iterations': 500,
    'verbose': True
}

第四步:执行算法

jy = victory(target_function = easom, **parameters)

第五步:获取算法最优解

variables = jy[:-1]
minimum   = jy[ -1]
print('变量值为: ', np.around(variables, 4) , ' 最小值为: ', round(minimum, 4) )

如下:

变量值为:  [3.1258 3.1804]  最小值为:  -0.9974

第六步:可视化最优值
在这里插入图片描述

三、案例(二)

我们换一个目标函数,以五维球形函数的最优化计算为例子.

def easom(variables_values):
    x    = variables_values
    func_value = y=sum(x**2 for x in variables_values)
    return func_value
   

后续参数类似。。不再重复演示。

四、额外补充

4.1 封装代码

如果你希望改进该算法模块,可以研究修改以下代码:


# Required Libraries
import numpy  as np
import random
import os

############################################################################

# Function
def target_function():
    return

############################################################################

# Function: Initialize Variables
def initial_position(size = 5, min_values = [-5,-5], max_values = [5,5], target_function = target_function):
    position = np.zeros((size, len(min_values)+1))
    for i in range(0, size):
        for j in range(0, len(min_values)):
             position[i,j] = random.uniform(min_values[j], max_values[j])
        position[i,-1] = target_function(position[i,0:position.shape[1]-1])
    return position

# Function: Updtade Position by Fitness
def update_bw_positions(position, best_position, worst_position):
    for i in range(0, position.shape[0]):
        if (position[i,-1] < best_position[-1]):
            best_position = np.copy(position[i, :])
        if (position[i,-1] > worst_position[-1]):
            worst_position = np.copy(position[i, :])
    return best_position, worst_position

# Function: Search
def update_position(position, best_position, worst_position, min_values = [-5,-5], max_values = [5,5], target_function = target_function):
    candidate = np.copy(position[0, :])
    for i in range(0, position.shape[0]):
        for j in range(0, len(min_values)):
            a  = int.from_bytes(os.urandom(8), byteorder = "big") / ((1 << 64) - 1)
            b  = int.from_bytes(os.urandom(8), byteorder = "big") / ((1 << 64) - 1)
            candidate[j] = np.clip(position[i, j] + a * (best_position[j] - abs(position[i, j])) - b * ( worst_position[j] - abs(position[i, j])), min_values[j], max_values[j] )
        candidate[-1] = target_function(candidate[:-1])
        if (candidate[-1] < position[i,-1]):
            position[i,:] = np.copy(candidate)
    return position

############################################################################

# Jaya Function
def victory(size = 5, min_values = [-5,-5], max_values = [5,5], iterations = 50, target_function = target_function, verbose = True):    
    count              = 0
    position           = initial_position(size, min_values, max_values, target_function)
    best_position      = np.copy(position[0, :])
    best_position[-1]  = float('+inf')
    worst_position     = np.copy(position[0, :])
    worst_position[-1] = 0
    while (count <= iterations): 
        if (verbose == True):
            print('Iteration = ', count,  ' f(x) = ', best_position[-1])
        position                      = update_position(position, best_position, worst_position, min_values, max_values, target_function)
        best_position, worst_position = update_bw_positions(position, best_position, worst_position)
        count                         = count + 1     
    return best_position 

4.2 算法论文

http://www.growingscience.com/ijiec/Vol7/IJIEC_2015_32.pdf

猜你喜欢

转载自blog.csdn.net/weixin_46211269/article/details/126287712