遗传算法与非线性规划的结合算法(附代码)

算法结合思想

        经典非线性规划算法大多采用梯度下降的方法求解,局部搜索能力较强,但是全局搜索能力较弱。而遗传算法采用选择、交叉和变异算子进行搜索,全局搜索能力较强,但是局部搜索能力较弱,一般只能得到问题的次优解,而不是最优解。因此,我在这里结合两种算法的优点,一方面采用遗传算法进行全局搜索,一方面采用非线性规划算法进行局部搜索,以得到问题的全局最优解。

        非线性规划遗传算法的算法流程如下:

基本与遗传算法类似,种群初始化模块根据求解问题初始化种群,适应度值计算模块根据适应度函数计算种群中染色体的适应度值,选择、交叉和变异为遗传算法的搜索算子,N为固定值,当进化次数为N的倍数时,则采用非线性寻优的方法加快进化,非线性寻优利用当前染色体值采用函数fmincon寻找问题的局部最优值。


遗传算法实现


1.种群初始化

2.适应度函数

3.选择操作

 4.交叉操作

5.变异操作 

 6.非线性寻优


 MATLAB程序实现案例


1.问题描述

2.适应度函数

        个体的适应度值为适应度函数值的倒数,适应度函数如下:

function y = fun(x)

y=-5*sin(x(1))*sin(x(2))*sin(x(3))*sin(x(4))*sin(x(5))-,    %接下一行
sin(5*x(1))*sin(5*x(2))*sin(5*x(3))*sin(5*x(4))*sin(5*x(5))+8;

end

对其取倒数即为个体适应度值。

3.选择操作

        选择操作采用轮盘赌法从种群中选择适应度好的个体组成新种群,代码如下:

function ret=Select(individuals,sizepop)
% 本函数对每一代种群中的染色体进行选择,以进行后面的交叉和变异
% individuals input  : 种群信息
% sizepop     input  : 种群规模
% opts        input  : 选择方法的选择
% ret         output : 经过选择后的种群

individuals.fitness= 1./(individuals.fitness);
sumfitness=sum(individuals.fitness);
sumf=individuals.fitness./sumfitness;
index=[];
for i=1:sizepop   %转sizepop次轮盘
    pick=rand;
    while pick==0
        pick=rand;
    end
    for j=1:sizepop
        pick=pick-sumf(j);
        if pick<0
            index=[index j];
            break;  %寻找落入的区间,此次转轮盘选中了染色体i,注意:在转sizepop次轮盘的过程中,有可能会重复选择某些染色体
        end
    end
end
individuals.chrom=individuals.chrom(index,:);
individuals.fitness=individuals.fitness(index);
ret=individuals;

4.交叉操作

        交叉操作是从种群中选择两个个体,按一定概率交叉得到新个体,代码如下:

function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss                input  : 交叉概率
% lenchrom              input  : 染色体的长度
% chrom                 input  : 染色体群
% sizepop               input  : 种群规模
% ret                   output : 交叉后的染色体

for i=1:sizepop 
    
    % 随机选择两个染色体进行交叉
    pick=rand(1,2);
    while prod(pick)==0
        pick=rand(1,2);
    end
    index=ceil(pick.*sizepop);
    % 交叉概率决定是否进行交叉
    pick=rand;
    while pick==0
        pick=rand;
    end
    if pick>pcross
        continue;
    end
    flag=0;
    while flag==0
        % 随机选择交叉位置
        pick=rand;
        while pick==0
            pick=rand;
        end
        pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
        pick=rand; %交叉开始
        v1=chrom(index(1),pos);
        v2=chrom(index(2),pos);
        chrom(index(1),pos)=pick*v2+(1-pick)*v1;
        chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
        flag1=test(lenchrom,bound,chrom(index(1),:));  %检验染色体1的可行性
        flag2=test(lenchrom,bound,chrom(index(2),:));  %检验染色体2的可行性
        if   flag1*flag2==0
            flag=0;
        else flag=1;
        end    %如果两个染色体不是都可行,则重新交叉
    end
end
ret=chrom;

5.变异操作

        变异操作是从种群中随机选择一个个体,按一定概率变异得到新个体,代码如下:

function ret=Mutation(pmutation,lenchrom,chrom,sizepop,pop,bound)
% 本函数完成变异操作
% pcorss                input  : 变异概率
% lenchrom              input  : 染色体长度
% chrom                 input  : 染色体群
% sizepop               input  : 种群规模
% pop                   input  : 当前种群的进化代数和最大的进化代数信息
% ret                   output : 变异后的染色体

for i=1:sizepop  
    % 随机选择一个染色体进行变异
    pick=rand;
    while pick==0
        pick=rand;
    end
    index=ceil(pick*sizepop);
    % 变异概率决定该轮循环是否进行变异
    pick=rand;
    if pick>pmutation
        continue;
    end
    flag=0;
    while flag==0
        % 变异位置
        pick=rand;
        while pick==0
            pick=rand;
        end
        pos=ceil(pick*sum(lenchrom));  %随机选择了染色体变异的位置,即选择了第pos个变量进行变异
        v=chrom(i,pos);
        v1=v-bound(pos,1);
        v2=bound(pos,2)-v;
        pick=rand; %变异开始
        if pick>0.5
            delta=v2*(1-pick^((1-pop(1)/pop(2))^2));
            chrom(i,pos)=v+delta;
        else
            delta=v1*(1-pick^((1-pop(1)/pop(2))^2));
            chrom(i,pos)=v-delta;
        end   %变异结束
        flag=test(lenchrom,bound,chrom(i,:));     %检验染色体的可行性
    end
end
ret=chrom;

6.检测函数(自加)

        由于交叉、变异过程中会产生超过取值范围的变量,所以定义了flag来检测变量是否在其约束区间里:

function flag=test(lenchrom,bound,code)
% lenchrom   input : 染色体长度
% bound      input : 变量的取值范围
% code       output: 染色体的编码值

flag=1;
[n,m]=size(code);

for i=1:n
    if code(i)<bound(i,1) || code(i)>bound(i,2)
        flag=0;
    end
end

7.种群初始化

        随机初始化种群,代码如下:

function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom   input : 染色体长度
% bound      input : 变量的取值范围
% ret        output: 染色体的编码值

flag=0;
while flag==0
    pick=rand(1,length(lenchrom));
    ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值
    flag=test(lenchrom,bound,ret);             %检验染色体的可行性
end

8.非线性寻优

        调用MATLAB最优化工具箱中函数fmincon进行非线性寻优,代码如下:

function ret = nonlinear(chrom,sizepop)
%非线性寻优
for i=1:sizepop
    x=fmincon(inline('-5*sin(x(1))*sin(x(2))*sin(x(3))*sin(x(4))*sin(x(5))-sin(5*x(1))*sin(5*x(2))*sin(5*x(3))*sin(5*x(4))*sin(5*x(5))'),chrom(i,:)',[],[],[],[],[0 0 0 0 0],[2.8274 2.8274 2.8274 2.8274 2.8274]);
    ret(i,:)=x';
end

 (有点长)

9.算法主函数

        主函数流程如下:

  1. 随机初始化种群。
  2. 计算种群适应度值,从中找出最优个体。
  3. 选择操作。
  4. 交叉操作。
  5. 变异操作。
  6. 非线性寻优。
  7. 判断是否进化结束,若否,则返回步骤(2)。代码如下
%% 清空环境
clc
clear
warning off

%% 遗传算法参数
maxgen=30;                         %进化代数
sizepop=100;                       %种群规模
pcross=[0.6];                      %交叉概率
pmutation=[0.01];                  %变异概率
lenchrom=[1 1 1 1 1];              %变量字串长度
bound=[0 0.9*pi;0 0.9*pi;0 0.9*pi;0 0.9*pi;0 0.9*pi];  %变量范围

%% 个体初始化
individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]);  %种群结构体
avgfitness=[];                                               %种群平均适应度
bestfitness=[];                                              %种群最佳适应度
bestchrom=[];                                                %适应度最好染色体
% 初始化种群
for i=1:sizepop
    individuals.chrom(i,:)=Code(lenchrom,bound);       %随机产生个体
    x=individuals.chrom(i,:);
    individuals.fitness(i)=fun(x);                     %个体适应度
end

%找最好的染色体
[bestfitness, bestindex]=min(individuals.fitness);
bestchrom=individuals.chrom(bestindex,:);  %最好的染色体
avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[];

%% 进化开始
for i=1:maxgen
    
    % 选择操作
    individuals=Select(individuals,sizepop);
    avgfitness=sum(individuals.fitness)/sizepop;
    % 交叉操作
    individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);
    % 变异操作
    individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,[i maxgen],bound);
    
    %每进化10代,以所得值为初始值进行非线性寻优
    if mod(i,10)==0
        individuals.chrom=nonlinear(individuals.chrom,sizepop);
    end
    
    % 计算适应度
    for j=1:sizepop
        x=individuals.chrom(j,:);
        individuals.fitness(j)=fun(x);
    end
    
    %找到最小和最大适应度的染色体及它们在种群中的位置
    [newbestfitness,newbestindex]=min(individuals.fitness);
    [worestfitness,worestindex]=max(individuals.fitness);
    % 代替上一次进化中最好的染色体
    if bestfitness>newbestfitness
        bestfitness=newbestfitness;
        bestchrom=individuals.chrom(newbestindex,:);
    end
    individuals.chrom(worestindex,:)=bestchrom;
    individuals.fitness(worestindex)=bestfitness;
    
    avgfitness=sum(individuals.fitness)/sizepop;
    
    trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束

%% 结果显示
figure
[r, c]=size(trace);
plot([1:r]',trace(:,1),'r-',[1:r]',trace(:,2),'b--');
title(['函数值曲线  ' '终止代数=' num2str(maxgen)],'fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('函数值','fontsize',12);
legend('各代平均值','各代最佳值','fontsize',12);
ylim([1.5 8])
disp('函数值                   变量');
% 窗口显示
disp([bestfitness x]);
grid on

结果展示

 左图为基本遗传算法优化过程,右图为非线性规划遗传算法优化过程。二者相比可见,在同等条件下,基于遗传算法和非线性规划的函数寻优算法在收敛速度和求解结果上优于基本的遗传算法。可见,将非线性规划方法同遗传算法相结合,提高了遗传算法的搜索能力。


其他优化算法


猜你喜欢

转载自blog.csdn.net/panmingqian/article/details/121815766