【嵌入式07】寄存器映射原理详解,GPIO端口的初始化设置步骤


一、STM32F103系列芯片的地址映射和寄存器映射原理

1、什么是寄存器?

现代的计算机主要包括三级存储,寄存器、内存储器和外存储器,存储数据的速率也依次递减。

我们不妨将寄存器和内存储器都抽象成一个大的数组,其中的每个元素都有一个字节(8位)大小,CPU寻址的时候就是以该元素为最小单位完成的。如前一个元素的地址是0x1FFFFFF0的话,那么下一个元素的地址就是0x1FFFFFF1。我们可以理解为硬件构成上寄存器和内存储器也都是由一个8位大小的元器件线性排列组成的,地址对应着上面讲到的数组中元素的地址。

寄存器是 CPU 内部的构造,它主要用于信息的存储

为什么会出现寄存器?

我们知道,程序在内存中装载,由 CPU 来运行,CPU 的主要职责就是用来处理数据。那么这个过程势必涉及到从存储器中读取和写入数据,因为它涉及通过控制总线发送数据请求并进入存储器存储单元,通过同一通道获取数据,这个过程非常的繁琐并且会涉及到大量的内存占用,而且有一些常用的内存页存在,其实是没有必要的,因此出现了寄存器,存储在 CPU 内部。
在这里插入图片描述

存放数据的寄存器是最好理解的,如果你需要读取一个数据,直接到这个寄存器所在的地方来问问他,数据是多少就行了。问寄存器这个动作,叫做访问寄存器。不同的数据会存放在不同的寄存器,例如引脚PA2与PB8的高低电平数据(1或0)肯定放在不同的寄存器里。那么怎么区分不同的寄存器呢?

通过地址,不同的寄存器有不同的地址。

指令、地址寄存器与数据寄存器类似,里边存放的都是0和1,毕竟单片机也只认识机器码,机器码都是0或1,只是特别的规定下,数据寄存器里面存放的0和1表示数据,指令寄存器里存放的表示指令。

2、地址映射和寄存器映射原理

我们知道,存储器本身没有地址,给存储器分配地址的过程叫存储器映射,那什么叫寄存器映射?寄存器到底是什么?

说到映射大家可能就会想到函数映射,脑海里会有一个画面:左边一个集合中的某个元素“射”出一条带箭头的直线指向右边的集合的某个元素。

其实外围设备的内存映射原理是一样的,只不过左边的集体变成了CPU,右边的集合变成了外围设备,那条带箭头的线就是连接CPU和外设地址引脚的地址总线。

存储器本身不具有地址信息,它的地址是由芯片厂商或用户分配,给存储器分配地址的过程就称为存储器映射。
在这里插入图片描述

要知道,一个开发板的CPU地址引脚并不是所有的都与内存元器件相连的,如果该板上有外设(如一块独立显卡),那么CPU就需要分出一些引脚来与该外设的地址引脚相连,相当于将一部分内存寻址的空间分给了外设,那不相当于CPU分出去地址寻址空间为空?

事实并非如此,一般的外设为了加快处理速度都有自己的片内RAM(比如说显存,你也知道显存对显卡性能的重要性),分出去的地址空间也就与片内RAM物理连接起来,这样CPU就能像访问内存一样去访问外设的片内RAM,这也就是所谓的内存映射。

在存储器的区域单元中,每一个单元对应不同的功能,当我们控制这些单元时就可以驱动外设工作。我们可以找到每个单元的起始地址,然后通过 C 语言指针的操作方式来访问这些单元,如果每次都是通过这种地址的方式来访问,不仅不好记忆还容易出错,这时我们可以根据每个单元功能的不同,以功能为名给这个内存单元取一个别名,这个别名就是我们经常说的寄存器,这个给已经分配好地址的有特定功能的内存单元取别名的过程就叫寄存器映射

3、怎样找到某个寄存器地址?——查看数据手册

此步操作可以参考该博客
https://blog.csdn.net/geek_monkey/article/details/86291377

二、GPIO端口的初始化设置步骤(时钟配置、输入输出模式设置、最大速率设置)

在这里插入图片描述

1、单片机的时钟

时钟是什么?

stm32的时钟是由内部或外部振荡器产生的“频率”,而被人们形象的称为“系统时钟”。最大为72MHz换成周期T为:1/72MHz≈13.9ns。

为什么要用时钟

因为耗电量,stm32功能强大,能做很多事,但与之同时带来的消耗也越严重,当stm32不引入时钟的话,就像51一样外设全开,相应耗电就很严重了,所以厂家(st公司)为了解决这个问题,引入了“时钟概念”,即使用哪个外设就给哪个外设时钟(频率),不使用的就关掉(不震荡)。此做法大大降低了功耗,续航持久。

在51单片机中一个时钟把所有的都包了,而stm32的时钟是有分工的,并且每类时钟的频率不一样,因为没必要所有的时钟都是最高频率,只要够用就行,好比一个门出来水流大小,如果只要洗脸,但是出来的是和洪水一样涌出来的水,那就没必要了,消耗能源也多,所以不同的时钟也会有频率差别,或者在配置的时候可以配置时钟分频。

2、GPIO简介

GPIO 是通用输入输出端口的简称,简单来说就是 STM32 可控制的引脚,STM32 芯片的 GPIO 引脚与外部设备连接起来,从而实现与外部通讯、控制以及数据采集的功能。STM32 芯片的 GPIO 被分成很多组,每组有 16 个引脚。

如型号为 STM32F103VET6 型号的芯片有 GPIOA、GPIOB、GPIOC至 GPIOE共 5组 GPIO,芯片一共 100个引脚,其中 GPIO就占了一大部分,所有的 GPIO 引脚都有基本的输入输出功能。

最基本的输出功能是由 STM32 控制引脚输出高、低电平,实现开关控制,如把 GPIO引脚接入到 LED灯,那就可以控制 LED灯的亮灭,引脚接入到继电器或三极管,那就可以通过继电器或三极管控制外部大功率电路的通断。

最基本的输入功能是检测外部输入电平,如把 GPIO 引脚连接到按键,通过电平高低
区分按键是否被按下。

3、GPIO模式

在这里插入图片描述
GPIO的工作模式主要有八种:4种输入方式,4种输出方式。

分别为输入浮空,输入上拉,输入下拉,模拟输入;
输出方式为开漏输出,开漏复用输出,推挽输出,推挽复用输出。

(1)GPIO_Mode_AIN 模拟输入 (应用ADC模拟输入,或者低功耗下省电)

(2)GPIO_Mode_IN_FLOATING 浮空输入 (浮空就是浮在半空,可以被其他物体拉上或者拉下,可以用于按键输入)

(3)GPIO_Mode_IPD 下拉输入 (IO内部下拉电阻输入)

(4)GPIO_Mode_IPU 上拉输入 (IO内部上拉电阻输入)

(5)GPIO_Mode_Out_OD 开漏输出(开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行)

(6)GPIO_Mode_Out_PP 推挽输出 (推挽就是有推有拉电平都是确定的,不需要上拉和下拉,IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的 )

(7)GPIO_Mode_AF_OD 复用开漏输出(片内外设功能(I2C的SCL,SDA))

(8)GPIO_Mode_AF_PP 复用推挽输出 (片内外设功能TX1,MOSI,MISO.SCK.SS)

GPIO 8 种工作模式

typedef enum
{
    
    
 GPIO_Mode_AIN = 0x0, // 模拟输入
 GPIO_Mode_IN_FLOATING = 0x04, // 浮空输入
 GPIO_Mode_IPD = 0x28, // 下拉输入
 GPIO_Mode_IPU = 0x48, // 上拉输入
 GPIO_Mode_Out_OD = 0x14, // 开漏输出
 GPIO_Mode_Out_PP = 0x10, // 推挽输出
 GPIO_Mode_AF_OD = 0x1C, // 复用开漏输出
 GPIO_Mode_AF_PP = 0x18 // 复用推挽输出
} GPIOMode_TypeDef;

4、输入和输出

简单来说:输出是CPU计算后进行控制,输入是读取后给CPU进行计算。

输入 进行数据的采集,外部电路通过IO口输入模拟量,然后通过“TTL肖特基触发器”(肖特基触发器是将相对缓慢变化的模拟信号变成矩形信号,便于后面读取),进入输入数据寄存器,最后就能给CPU读取数据。

输出 GPIO的输出与51的 IO口是差不多的概念,都是输出高、低电平来控制外部电路:

处理过程:CPU下达输出高或低电平指令,指令配置“位设置/清除寄存器(GPIOx_BSRR)”(设置就是“1”高电平,清除就是“0”低电平),再由位寄存器配置输出数据寄存器(GPIOx_ODR),经过一个选择器(选择是一般输出还是复用功能输出),然后进行输出控制,控制是什么模式:推挽、开漏或者关闭,然后输出高或低电平到IO口。

输入模式

模式 介绍
浮空输入模式 浮空输入状态下,IO 的电平状态是不确定的,完全由外部输入决定,如果在该引脚悬空的情况下,读取该端口的电平是不确定的。可做KEY按键识别。
上、下拉输入模式 内部设有上拉和下拉电阻,当外部电路为低电平,IO口设为下拉模式,当外部电路为低电平,IO口设为上拉模式。
模拟输入 用作内部ADC输入或DAC输出,预防干扰。

输出模式

推挽输出模式:(最常用)

推挽电路是两个参数相同的三极管或 MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。

简单来说,当一个mos管电流增大时,另一个mos管的电流就减小,当P-MOS管饱和时,同时N-MOS截止,接通并输出Vdd及高电平“1”,反之,当N-MOS管饱和时,同时P-MOS截止,接通并输出Vss及低电平“0”。 就像是这两个mos管在相互“推、拉(挽)”,所以就叫推挽。

开漏输出模式:(不常用)

输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。

利用外部电路的驱动能力,减少 IC 内部的驱动。当 IC 内部 MOSFET 导通时,驱动电流是从外部的VCC 流经 R pull-up ,MOSFET到 GND。IC 内部仅需很少的栅极驱动电流。

推挽、开漏复用模式:

当GPIO口被用作第二功能时,需要配置,端口重映射AFIO。

5、GPIO初始化步骤

第一步:使能GPIOx口的时钟
第二步:指明GPIOx口的哪一位,这一位的速度大小以及模式
第三步:调用GPIOx初始化函数进行初始化
第四步:调用GPIO-SetBits函数,进行相应位的置位

6、实例

对单个GPIO口的初始化:

GPIO_InitTypeDef GPIO_InitStructure;
第一步:使能GPIOA的时钟:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);

第二步:设置GPIOA参数:输出OR输入,工作模式,端口翻转速率
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_6| GPIO_Pin_7| GPIO_Pin_8; //设定要操作的管脚
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //设置为推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // IO口速度为50MHz

第三步:调用GPIOA口初始化函数,进行初始化。
GPIO_Init(GPIOA, &GPIO_InitStructure); //根据设定参数初始化GPIOA

第四步:调用GPIO-SetBits函数,进行相应为的置位。
GPIO_SetBits(GPIOA,GPIO_Pin_0); //输出高

对于多个GPIO口的初始化如下

GPIO_InitTypeDef GPIO_InitStructure;
第一步:使能GPIOA,GPIOE的时钟:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE, ENABLE);

第二步:设置GPIOA,GPIOE参数:输出OR输入,工作模式,端口翻转速率
第三步:调用GPIOA口初始化函数,进行初始化。
第四步:调用GPIO-SetBits函数,进行相应为的置位。

把第二、三、四步合并分别设置GPIOA和GPIOE
先设置GPIOA
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; // 第四个口,PA4
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //设置为推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // IO口速度为50MHz
GPIO_Init(GPIOA,&GPIO-InitST); //根据设定参数初始化GPIOA
GPIO_SetBits(GPIOA,GPIO_Pin_4); //输出高

再设置GPIOE
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; // 第三个口,PE3
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //设置为推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // IO口速度为50MHz
GPIO_Init(GPIOE,&GPIO-InitST); //根据设定参数初始化GPIOE
GPIO_SetBits(GPIOE,GPIO_Pin_3); //输出高

7、为什么要先配置时钟,再配置GPIO?

所有寄存器都需要时钟才能配置,寄存器是由D触发器组成的,只有送来了时钟,触发器才能被改写值。

任何MCU的任何外设都需要有时钟,STM32为了让用户更好地掌握功耗,对每个外设的时钟都设置了开关,让用户可以精确地控制,关闭不需要的设备,达到节省供电的目的。

51单片机不用配置IO时钟,只是因为默认使用同一个时钟,这样是方便,但是这样的话功耗就降低不了。

例如,某个功能不需要,但是它还是一直运行。
stm32需要配置时钟,就可以把不需要那些功能的功耗去掉。

当你想关闭某个IO的时候,关闭它相对应的时钟使能即可,不过在51里面,在使用IO的时候是没有设置IO的时钟的,在STM32中,有外部和内部时钟之分。

ARM的芯片都是这样,外设通常都是给了时钟后,才能设置它的寄存器(即才能使用这个外设)。STM32、LPC1XXX等等都是这样。
这么做的目的是为了省电,使用了所谓时钟门控的技术。
这也属于电路里同步电路的范畴:同步电路总是需要1个时钟。

三、小结

GPIO初始化需要通过时钟配置、输入输出模式设置、最大速率设置三个步骤来实现。
之后点灯可参考下一篇博客https://blog.csdn.net/qq_46467126/article/details/120791793

参考
[1] https://blog.csdn.net/weixin_47083537/article/details/109083759
[2] https://blog.csdn.net/asdfg1075511750/article/details/79663568
[3] https://blog.csdn.net/qq_42384937/article/details/83512162
[4] https://blog.csdn.net/weixin_44188050/article/details/103999663
[5] https://blog.csdn.net/asdfg1075511750/article/details/79721878

猜你喜欢

转载自blog.csdn.net/qq_46467126/article/details/120737655