16.二分查找(下):二分查找的变体

16.二分查找(下):如何快速定位IP对应的省份地址?

markdown文件已上传至github

打开百度,在搜索框里随便输一个 IP 地址,就会看到它的归属地。

img

它是通过维护一个很大的 IP 地址库来实现的。地址库中包括 IP 地址范围和归属地的对应关系。当我们想要查询 $202.102.133.13 I P I P 这个 IP 地址的归属地时,我们就在地址库中搜索,发现这个 IP 地址落在 [202.102.133.0, 202.102.133.255]$这个地址范围内,那我们就可以将这个 IP 地址范围对应的归属地“山东东营市”显示给用户了。

[202.102.133.0, 202.102.133.255]  山东东营市 
[202.102.135.0, 202.102.136.255]  山东烟台 
[202.102.156.34, 202.102.157.255] 山东青岛 
[202.102.48.0, 202.102.48.255] 江苏宿迁 
[202.102.49.15, 202.102.51.251] 江苏泰州 
[202.102.56.0, 202.102.56.255] 江苏连云港

假设我们有 12 万条这样的 IP 区间与归属地的对应关系,如何快速定位出一个 IP 地址的归属地呢?

最简单的二分查找写起来确实不难,但是,二分查找的变形问题就没那么好写了。

常见的二分查找变形问题

img

为了简化讲解,假设数据是从小到大排列的。

1.变体一:查找第一个值等于给定值的元素


public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid = low + ((high - low) >> 1);
    if (a[mid] >= value) {
      high = mid - 1;
    } else {
      low = mid + 1;
    }
  }

  if (low < n && a[low]==value) return low;
  else return -1;
}

这种写法不好理解,看下方这种:


public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] > value) {
      high = mid - 1;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      if ((mid == 0) || (a[mid - 1] != value)) return mid;
      else high = mid - 1;
    }
  }
  return -1;
}

a[mid]跟要查找的 value 的大小关系有三种情况:大于、小于、等于。对于 a[mid]>value 的情况,我们需要更新 high= mid-1;对于 a[mid]<value 的情况,我们需要更新 low=mid+1。这两点都很好理解。那当 a[mid]=value 的时候应该如何处理呢?

如果我们查找的是任意一个值等于给定值的元素,当 a[mid]等于要查找的值时,a[mid]就是我们要找的元素。但是,如果我们求解的是第一个值等于给定值的元素,当 a[mid]等于要查找的值时,我们就需要确认一下这个 a[mid]是不是第一个值等于给定值的元素。

我们重点看第 11 行代码。如果 mid 等于 0,那这个元素已经是数组的第一个元素,那它肯定是我们要找的;如果 mid 不等于 0,但 a[mid]的前一个元素 a[mid-1]不等于 value,那也说明 a[mid]就是我们要找的第一个值等于给定值的元素。

如果经过检查之后发现 a[mid]前面的一个元素 a[mid-1]也等于 value,那说明此时的 a[mid]肯定不是我们要查找的第一个值等于给定值的元素。那我们就更新 high=mid-1,因为要找的元素肯定出现在[low, mid-1]之间

2.变体二:查找最后一个值等于给定值的元素


public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] > value) {
      high = mid - 1;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      if ((mid == n - 1) || (a[mid + 1] != value)) return mid;
      else low = mid + 1;
    }
  }
  return -1;
}

3.变体三:查找第一个大于等于给定值的元素


public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] >= value) {
      if ((mid == 0) || (a[mid - 1] < value)) return mid;
      else high = mid - 1;
    } else {
      low = mid + 1;
    }
  }
  return -1;
}

如果 a[mid]小于要查找的值 value,那要查找的值肯定在[mid+1, high]之间,所以,我们更新 low=mid+1。对于 a[mid]大于等于给定值 value 的情况,我们要先看下这个 a[mid]是不是我们要找的第一个值大于等于给定值的元素。如果 a[mid]前面已经没有元素,或者前面一个元素小于要查找的值 value,那 a[mid]就是我们要找的元素。这段逻辑对应的代码是第 7 行。如果 a[mid-1]也大于等于要查找的值 value,那说明要查找的元素在[low, mid-1]之间,所以,我们将 high 更新为 mid-1。

4.变体四:查找最后一个小于等于给定值的元素


public int bsearch7(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] > value) {
      high = mid - 1;
    } else {
      if ((mid == n - 1) || (a[mid + 1] > value)) return mid;
      else low = mid + 1;
    }
  }
  return -1;
}

5.解答开篇

如何快速定位出一个 IP 地址的归属地?

如果 IP 区间与归属地的对应关系不经常更新,我们可以先预处理这 12 万条数据,让其按照起始 IP 从小到大排序。如何来排序呢?我们知道,IP 地址可以转化为 32 位的整型数。所以,我们可以将起始地址,按照对应的整型值的大小关系,从小到大进行排序。然后,这个问题就可以转化为我刚讲的第四种变形问题“在有序数组中,查找最后一个小于等于某个给定值的元素”了。当我们要查询某个 IP 归属地时,我们可以先通过二分查找,找到最后一个起始 IP 小于等于这个 IP 的 IP 区间,然后,检查这个 IP 是否在这个 IP 区间内,如果在,我们就取出对应的归属地显示;如果不在,就返回未查找到。

6.思考

如果有序数组是一个循环有序数组,比如 4,5,6,1,2,3。针对这种情况,如何实现一个求“值等于给定值”的二分查找算法呢?

有三种方法查找循环有序数组

一、

  1. 找到分界下标,分成两个有序数组

  2. 判断目标值在哪个有序数据范围内,做二分查找

二、

  1. 找到最大值的下标 x;

  2. 所有元素下标 +x 偏移,超过数组范围值的取模;

  3. 利用偏移后的下标做二分查找;

  4. 如果找到目标下标,再作 -x 偏移,就是目标值实际下标。

两种情况最高时耗都在查找分界点上,所以时间复杂度是 O(N)。

复杂度有点高,能否优化呢?

三、
我们发现循环数组存在一个性质:以数组中间点为分区,会将数组分成一个有序数组和一个循环有序数组。

如果首元素小于 mid,说明前半部分是有序的,后半部分是循环有序数组;
如果首元素大于 mid,说明后半部分是有序的,前半部分是循环有序的数组;
如果目标元素在有序数组范围中,使用二分查找;
如果目标元素在循环有序数组中,设定数组边界后,使用以上方法继续查找。

时间复杂度为 O(logN)。

7.参考

这个是我学习王争老师的《数据结构与算法之美》所做的笔记,王争老师是前谷歌工程师,该课程截止到目前已有87244人付费学习,质量不用多说。

在这里插入图片描述

截取了课程部分目录,课程结合实际应用场景,从概念开始层层剖析,由浅入深进行讲解。本人之前也学过许多数据结构与算法的课程,唯独王争老师的课给我一种茅塞顿开的感觉,强烈推荐大家购买学习。课程二维码我已放置在下方,大家想买的话可以扫码购买。

在这里插入图片描述

本人做的笔记并不全面,推荐大家扫码购买课程进行学习,而且课程非常便宜,学完后必有很大提高。

在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/supreme_1/article/details/107925718