数学建模--TOPSIS代码(Python实现)

有关模型介绍: TOPSIS.


import numpy as np  # 导入numpy包并将其命名为np

##定义正向化的函数
def positivization(x,type,i):
# x:需要正向化处理的指标对应的原始向量
# typ:指标类型(1:极小型,2:中间型,3:区间型)
# i:正在处理的是原始矩阵的哪一列
    if type == 1:  #极小型
        print("第",i,"列是极小型,正向化中...")
        posit_x = x.max(0)-x
        print("第",i,"列极小型处理完成")
        print("--------------------------分隔--------------------------")
        return posit_x
    elif type == 2:  #中间型
        print("第",i,"列是中间型")
        best = int(input("请输入最佳值:"))
        m = (abs(x-best)).max()
        posit_x = 1-abs(x-best)/m
        print("第",i,"列中间型处理完成")
        print("--------------------------分隔--------------------------")
        return posit_x
    elif type == 3:  #区间型
        print("第",i,"列是区间型")
        a,b = [int(l) for l in input("按顺序输入最佳区间的左右界,并用逗号隔开:").split(",")]
        m = (np.append(a-x.min(),x.max()-b)).max()
        x_row = x.shape[0]  #获取x的行数
        posit_x = np.zeros((x_row,1),dtype=float)
        for r in range(x_row):
            if x[r] < a:
               posit_x[r] = 1-(a-x[r])/m
            elif x[r] > b:
               posit_x[r] = 1-(x[r]-b)/m
            else:
               posit_x[r] = 1
        print("第",i,"列区间型处理完成")
        print("--------------------------分隔--------------------------")
        return posit_x.reshape(x_row)


## 第一步:从外部导入数据
#注:保证表格不包含除数字以外的内容
x_mat = np.loadtxt('river.csv', encoding='UTF-8-sig', delimiter=',')  # 推荐使用csv格式文件

## 第二步:判断是否需要正向化
n, m = x_mat.shape
print("共有", n, "个评价对象", m, "个评价指标")
judge = int(input("指标是否需要正向化处理,需要请输入1,不需要则输入0:"))
if judge == 1:
    position = np.array([int(i) for i in input("请输入需要正向化处理的指标所在的列,例如第1、3、4列需要处理,则输入1,3,4").split(',')])
    position = position-1
    typ = np.array([int(j) for j in input("请按照顺序输入这些列的指标类型(1:极小型,2:中间型,3:区间型)格式同上").split(',')])
    for k in range(position.shape[0]):
        x_mat[:, position[k]] = positivization(x_mat[:, position[k]], typ[k], position[k])
    print("正向化后的矩阵:", x_mat)

## 第三步:对正向化后的矩阵进行标准化
tep_x1 = (x_mat * x_mat).sum(axis=0)  # 每个元素平方后按列相加
tep_x2 = np.tile(tep_x1, (n, 1))  # 将矩阵tep_x1平铺n行
Z = x_mat / ((tep_x2) ** 0.5)  # Z为标准化矩阵
print("标准化后的矩阵为:", Z)

## 第四步:计算与最大值和最小值的距离,并算出得分
tep_max = Z.max(0)  # 得到Z中每列的最大值
tep_min = Z.min(0)  # 每列的最小值
tep_a = Z - np.tile(tep_max, (n, 1))  # 将tep_max向下平铺n行,并与Z中的每个对应元素做差
tep_i = Z - np.tile(tep_min, (n, 1))  # 将tep_max向下平铺n行,并与Z中的每个对应元素做差
D_P = ((tep_a ** 2).sum(axis=1)) ** 0.5  # D+与最大值的距离向量
D_N = ((tep_i ** 2).sum(axis=1)) ** 0.5
S = D_N / (D_P + D_N)  # 未归一化的得分
std_S = S / S.sum(axis=0)
sorted_S = np.sort(std_S, axis=0)
print(std_S)  # 打印标准化后的得分
## std_S.to_csv(std_S.csv)  结果输出到std_S.csv文件

猜你喜欢

转载自blog.csdn.net/ddjhpxs/article/details/105439081