OpenGL基础22:贴图

在 OpenGL基础13:第一个正方体 中给正方体加了箱子的纹理,但是在后面介绍光照的时候又把纹理属性给丢了,现在尝试在有纹理的基础之上增加光照

一、漫反射贴图

先把之前的纹理加回去

顶点着色器和主代码的处理和之前 OpenGL基础9:纹理 纹理这一章一样,而对于片段着色器,需要进行稍加修改

在 OpenGL基础21:材质 这一章里,给予了物体材质属性,包括:

  • ambient:定义了在环境光照下这个物体反射的是什么颜色,通常是和物体颜色相同的颜色
  • diffuse:定义了在漫反射光照下物体的颜色,通常是和物体颜色相同的颜色
  • specular:设置的是物体受到的镜面光照影响的颜色,或者是反射一个物体特定的镜面高光颜色(暂时不考虑)
  • shininess:反光度,值越高,反射光的能力越强,散射得越少,高光点越小(暂时不考虑)

但是,一个物体自身作为一个整体为其拥有一个材质其实是有问题的,例如一辆汽车,轮胎和车窗的材质明显不同,也就是说,对于物体的不同部分,可能会拥有不同的 ambient 和 diffuse 属性

因此,这就需要通过某种方式对每个原始像素独立设置diffuse颜色,这其实就是之前的一直在用的纹理,只不过在这中场景和需求下,我们叫它贴图

用一张图片覆盖住物体,以便我们为每个原始像素索引独立颜色值。在光照场景中,通过纹理来呈现一个物体的diffuse颜色,这个做法被称做漫反射贴图(Diffuse texture)

这样的话,在片段着色器中,原先的 ambient 和 diffuse 属性就要用 diffuse 贴图替代(之所以这两个属性都用 diffuse 是因为大部分情况下,这两者的值是等同的),如下:

#version 330 core
struct Material
{
    sampler2D diffuse;      //贴图
    vec3 specular;          //镜面光色
    float shininess;        //反光度
};
struct Light
{
    vec3 position;
    vec3 ambient;
    vec3 diffuse;
    vec3 specular;
};
uniform Material material;
uniform Light light;
out vec4 color;
uniform vec3 viewPos;
in vec2 texIn;
in vec3 fragPosIn;
in vec3 normalIn;
void main()
{
    //环境光
    vec3 ambient = light.ambient * vec3(texture(material.diffuse, texIn));

    //漫反射光
    vec3 norm = normalize(normalIn);
    vec3 lightDir = normalize(light.position - fragPosIn);
    float diff = max(dot(norm, lightDir), 0.0f);
    vec3 diffuse = light.diffuse * (diff * vec3(texture(material.diffuse, texIn)));

    //镜面光
    vec3 viewDir = normalize(viewPos - fragPosIn);
    vec3 reflectDir = reflect(-lightDir, norm);
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
    vec3 specular = light.specular * (spec * material.specular);

    //混合
    vec3 result = ambient + diffuse + specular;
    color = vec4(result, 1.0f);
}

好了,效果有了!

如果仔细从各个角度看,会发现一块木箱子居然还会有镜面高光,这不科学,这时可以把 specular 设置为 vec(0.0) 来修正

二、镜面贴图采样

上面的箱子还是非常容易的,因为它有一个特点:每个部分都拥有几乎一致的 diffuse 属性,并且 specular 属性都为 vec(0.0),那么问题来了,假设这个时候我们想要给箱子加一个金属边框要怎么处理?要知道金属拥有较高的反射度,和橡木材质正好相反,如果说只用单独的一个带金属边框的木箱纹理,那肯定也是有问题的,所以这个时候就需要2张纹理贴图:一张为带金属边框的橡木纹理,一张为单纯金属边框纹理

如下,一个 specular 高光的亮度可以通过图片中每个纹理的亮度来获得,可以使用这两张纹理作为漫反射贴图和镜面贴图(来源:https://learnopengl.com/#!Lighting/Lighting-maps

specular 贴图的每个像素可以显示为一个颜色向量,可以看出,这张纹理中间是一片黑,这也意味着中间部分是露出来的木头材质,在此 specular 属性即对应像素颜色属性正是 vec(0.0)

使用Photoshop或Gimp之类的工具,通过将图片进行裁剪,将某部分调整成黑白图样,并调整亮度/对比度的做法,可以非常容易将一个diffuse纹理贴图处理为specular贴图,这样的贴图最好为黑白

有了上面的经验,就知道怎么修改代码逻辑了:

#version 330 core
struct Material
{
    sampler2D diffuse;      //贴图
    sampler2D specular;     //镜面贴图
    float shininess;        //反光度
};
struct Light
{
    vec3 position;
    vec3 ambient;
    vec3 diffuse;
    vec3 specular;
};
uniform Material material;
uniform Light light;
out vec4 color;
uniform vec3 viewPos;
in vec2 texIn;
in vec3 fragPosIn;
in vec3 normalIn;
void main()
{
    //环境光
    vec3 ambient = light.ambient * vec3(texture(material.diffuse, texIn));

    //漫反射光
    vec3 norm = normalize(normalIn);
    vec3 lightDir = normalize(light.position - fragPosIn);
    float diff = max(dot(norm, lightDir), 0.0f);
    vec3 diffuse = light.diffuse * (diff * vec3(texture(material.diffuse, texIn)));

    //镜面光
    vec3 viewDir = normalize(viewPos - fragPosIn);
    vec3 reflectDir = reflect(-lightDir, norm);
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
    vec3 specular = light.specular * (spec * vec3(texture(material.specular, texIn)));

    //混合
    vec3 result = ambient + diffuse + specular;
    color = vec4(result, 1.0f);
}

效果如下:

三、放射光贴图

上面使用了漫反射贴图和镜面贴图,物体已经有点真实的感觉了,后面还有法线贴图和反射贴图,可以给物体更完美的细节,只是这里就暂时不讲了

这里可以再提一个非常简单的贴图:放射光贴图,先上整篇文章的完整代码和效果,非常容易

#version 330 core
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 normal;
layout (location = 2) in vec2 texture;
out vec2 texIn;
out vec3 normalIn;
out vec3 fragPosIn;
uniform mat4 model;             //模型矩阵
uniform mat4 view;              //观察矩阵
uniform mat4 projection;        //投影矩阵
void main()
{
    gl_Position = projection * view * model * vec4(position, 1.0);
    texIn = vec2(texture.x, 1.0f - texture.y);
    fragPosIn = vec3(model * vec4(position, 1.0f));
    normalIn = mat3(transpose(inverse(model))) * normal;
}

//////////////////////////////////////////////////////////////////////////

#version 330 core
struct Material
{
    sampler2D diffuse;      //贴图
    sampler2D specular;     //镜面贴图
    sampler2D emission;     //放射贴图
    float shininess;        //反光度
};
struct Light
{
    vec3 position;
    vec3 ambient;
    vec3 diffuse;
    vec3 specular;
};
uniform Material material;
uniform Light light;
out vec4 color;
uniform vec3 viewPos;
in vec2 texIn;
in vec3 fragPosIn;
in vec3 normalIn;
void main()
{
    //环境光
    vec3 ambient = light.ambient * vec3(texture(material.diffuse, texIn));

    //漫反射光
    vec3 norm = normalize(normalIn);
    vec3 lightDir = normalize(light.position - fragPosIn);
    float diff = max(dot(norm, lightDir), 0.0f);
    vec3 diffuse = light.diffuse * (diff * vec3(texture(material.diffuse, texIn)));

    //镜面光
    vec3 viewDir = normalize(viewPos - fragPosIn);
    vec3 reflectDir = reflect(-lightDir, norm);
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
    vec3 specular = light.specular * (spec * vec3(texture(material.specular, texIn)));

    //放射光贴图
    vec3 emission = vec3(texture(material.emission, texIn));

    //混合
    vec3 result = ambient + diffuse + specular + emission;
    color = vec4(result, 1.0f);
}

main.cpp:

#include<iostream>
#include<opengl/glew.h>
#define GLEW_STATIC
#include<GLFW/glfw3.h>
#include"Camera.h"
#include<glm/glm.hpp>
#include<glm/gtc/matrix_transform.hpp>
#include<glm/gtc/type_ptr.hpp>
#include"Shader.h"
#include<opengl/freeglut.h>
#include<SOIL.h>

bool keys[1024];
Camera camera;
GLfloat lastX, lastY;
bool firstMouse = true;
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void cameraMove();
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);
const GLuint WIDTH = 800, HEIGHT = 600;

int main()
{
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
    glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);

    GLFWwindow* window = glfwCreateWindow(WIDTH, HEIGHT, "LearnOpenGL", nullptr, nullptr);
    glfwMakeContextCurrent(window);
    glfwSetKeyCallback(window, key_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);

    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
    glewExperimental = GL_TRUE;
    glewInit();

    int width, height;
    glfwGetFramebufferSize(window, &width, &height);
    glViewport(0, 0, width, height);

    Shader shaderObj("ObjVShader.txt", "ObjFShader.txt");
    Shader shaderLight("LightVShader.txt", "LightFShader.txt");

    GLfloat vertices[] = 
    {
        -0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  0.0f,  0.0f,
         0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  1.0f,  0.0f,
         0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  1.0f,  1.0f,
         0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  1.0f,  1.0f,
        -0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  0.0f,  1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  0.0f,  0.0f,

        -0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,  0.0f,  0.0f,
         0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,  1.0f,  0.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,  1.0f,  1.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,  1.0f,  1.0f,
        -0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,  0.0f,  1.0f,
        -0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,  0.0f,  0.0f,

        -0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,  1.0f,  0.0f,
        -0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,  1.0f,  1.0f,
        -0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,  0.0f,  1.0f,
        -0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,  0.0f,  1.0f,
        -0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,  0.0f,  0.0f,
        -0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,  1.0f,  0.0f,

         0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,  1.0f,  0.0f,
         0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,  1.0f,  1.0f,
         0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,  0.0f,  1.0f,
         0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,  0.0f,  1.0f,
         0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,  0.0f,  0.0f,
         0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,  1.0f,  0.0f,

        -0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,  0.0f,  1.0f,
         0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,  1.0f,  1.0f,
         0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,  1.0f,  0.0f,
         0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,  1.0f,  0.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,  0.0f,  0.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,  0.0f,  1.0f,

        -0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,  0.0f,  1.0f,
         0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,  1.0f,  1.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,  1.0f,  0.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,  1.0f,  0.0f,
        -0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,  0.0f,  0.0f,
        -0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,  0.0f,  1.0f
    };
    GLuint VBO, VAO, textureA, textureB, textureC;
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);

    glBindVertexArray(VAO);
    glBindBuffer(GL_ARRAY_BUFFER, VBO);

    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
    glEnableVertexAttribArray(0);
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
    glEnableVertexAttribArray(1);
    glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
    glEnableVertexAttribArray(2);

    int picWidth, picHeight;
    glGenTextures(1, &textureA);
    glBindTexture(GL_TEXTURE_2D, textureA);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    unsigned char* image = SOIL_load_image("Texture/wood2.jpg", &picWidth, &picHeight, 0, SOIL_LOAD_RGB);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, picWidth, picHeight, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
    glGenerateMipmap(GL_TEXTURE_2D);
    SOIL_free_image_data(image);

    glGenTextures(1, &textureB);
    glBindTexture(GL_TEXTURE_2D, textureB);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST_MIPMAP_NEAREST);
    image = SOIL_load_image("Texture/specular.jpg", &picWidth, &picHeight, 0, SOIL_LOAD_RGB);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, picWidth, picHeight, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
    glGenerateMipmap(GL_TEXTURE_2D);
    SOIL_free_image_data(image);

    glGenTextures(1, &textureC);
    glBindTexture(GL_TEXTURE_2D, textureC);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST_MIPMAP_NEAREST);
    image = SOIL_load_image("Texture/cloudImg.jpg", &picWidth, &picHeight, 0, SOIL_LOAD_RGB);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, picWidth, picHeight, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
    glGenerateMipmap(GL_TEXTURE_2D);
    SOIL_free_image_data(image);
    glBindTexture(GL_TEXTURE_2D, 0);

    shaderObj.Use();
    glUniform1i(glGetUniformLocation(shaderObj.Program, "material.diffuse"), 0);
    glUniform1i(glGetUniformLocation(shaderObj.Program, "material.specular"), 1);
    glUniform1i(glGetUniformLocation(shaderObj.Program, "material.emission"), 2);

    GLuint lightVAO;
    glGenVertexArrays(1, &lightVAO);
    glBindVertexArray(lightVAO);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
    //VBO数据已经绑定且我们就用之前的顶点数据,所以无需再管理VBO
    glEnableVertexAttribArray(0);

    glBindBuffer(GL_ARRAY_BUFFER, 0);
    glBindVertexArray(0);

    glEnable(GL_DEPTH_TEST);
    while (!glfwWindowShouldClose(window))
    {
        glfwPollEvents();
        glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT);
        glClear(GL_DEPTH_BUFFER_BIT);
        cameraMove();

        shaderLight.Use();
        lightPos.x = 1.0f + sin(glfwGetTime()) * 2.0f;
        lightPos.y = sin(glfwGetTime() / 2.0f) * 1.0f;
        glm::mat4 view = camera.GetViewMatrix();
        glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (GLfloat)WIDTH / (GLfloat)HEIGHT, 0.1f, 100.0f);
        glm::mat4 model = glm::translate(glm::mat4(1.0f), lightPos);
        model = glm::scale(model, glm::vec3(0.2f));
        GLint modelLoc = glGetUniformLocation(shaderLight.Program, "model");
        GLint viewLoc = glGetUniformLocation(shaderLight.Program, "view");
        GLint projLoc = glGetUniformLocation(shaderLight.Program, "projection");
        glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
        glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
        glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));

        glBindVertexArray(lightVAO);
        glDrawArrays(GL_TRIANGLES, 0, 36);

        shaderObj.Use();
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, textureA);
        glActiveTexture(GL_TEXTURE1);
        glBindTexture(GL_TEXTURE_2D, textureB);
        glActiveTexture(GL_TEXTURE2);
        glBindTexture(GL_TEXTURE_2D, textureC);
        GLint matSpecularLoc = glGetUniformLocation(shaderObj.Program, "material.specular");
        GLint matShineLoc = glGetUniformLocation(shaderObj.Program, "material.shininess");
        glUniform3f(matSpecularLoc, 0.0f, 0.0f, 0.0f);
        glUniform1f(matShineLoc, 32.0f);

        GLint lightPosLoc = glGetUniformLocation(shaderObj.Program, "light.position");
        GLint lightAmbientLoc = glGetUniformLocation(shaderObj.Program, "light.ambient");
        GLint lightDiffuseLoc = glGetUniformLocation(shaderObj.Program, "light.diffuse");
        GLint lightSpecularLoc = glGetUniformLocation(shaderObj.Program, "light.specular");
        glUniform3f(lightAmbientLoc, 0.2f, 0.2f, 0.2f);
        glUniform3f(lightDiffuseLoc, 1.0f, 1.0f, 1.0f);
        glUniform3f(lightSpecularLoc, 1.0f, 1.0f, 1.0f);
        glUniform3f(lightPosLoc, lightPos.x, lightPos.y, lightPos.z);

        GLint viewPosLoc = glGetUniformLocation(shaderObj.Program, "viewPos");
        glUniform3f(viewPosLoc, camera.Position.x, camera.Position.y, camera.Position.z);
        model = glm::mat4(1.0f);
        model = glm::rotate(model, glm::radians(57.0f), glm::vec3(-0.5f, 1.0f, 0.0f));
        modelLoc = glGetUniformLocation(shaderObj.Program, "model");
        viewLoc = glGetUniformLocation(shaderObj.Program, "view");
        projLoc = glGetUniformLocation(shaderObj.Program, "projection");
        glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
        glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
        glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));

        glBindVertexArray(VAO);
        glDrawArrays(GL_TRIANGLES, 0, 36);

        glBindVertexArray(0);
        glfwSwapBuffers(window);
    }
    glDeleteVertexArrays(1, &VAO);
    glDeleteBuffers(1, &VBO);
    glfwTerminate();
    return 0;
}

GLfloat deltaTime = 0.0f;
GLfloat lastFrame = 0.0f;
void cameraMove()
{
    GLfloat currentFrame = glfwGetTime();
    deltaTime = currentFrame - lastFrame;
    lastFrame = currentFrame;

    GLfloat cameraSpeed = 1.0f * deltaTime;
    if (keys[GLFW_KEY_W])
        camera.ProcessKeyboard(Camera_Movement(FORWARD), deltaTime);
    if (keys[GLFW_KEY_S])
        camera.ProcessKeyboard(Camera_Movement(BACKWARD), deltaTime);
    if (keys[GLFW_KEY_A])
        camera.ProcessKeyboard(Camera_Movement(LEFT), deltaTime);
    if (keys[GLFW_KEY_D])
        camera.ProcessKeyboard(Camera_Movement(RIGHT), deltaTime);
}

void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{
    if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
        glfwSetWindowShouldClose(window, GL_TRUE);
    if (action == GLFW_PRESS)           //如果当前是按下操作
        keys[key] = true;
    else if (action == GLFW_RELEASE)            //松开键盘
        keys[key] = false;
}

void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    camera.ProcessMouseScroll(yoffset);
}

void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
    if (firstMouse)
    {
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }
    GLfloat xoffset = xpos - lastX;
    GLfloat yoffset = lastY - ypos;
    lastX = xpos;
    lastY = ypos;
    
    GLfloat sensitivity = 0.05;
    xoffset *= sensitivity;
    yoffset *= sensitivity;
    
    camera.ProcessMouseMovement(xoffset, yoffset);
}

可以看到,箱子的每个面上都有被贴上了一块无视光照的“云彩”,这就是放射光贴图,顾名思义,它往往是用来显示物体自身发光(Emit)时可能产生的颜色,例如游戏中宝箱上发光的按钮,楼梯间紧急出口牌子亮的绿光等等

猜你喜欢

转载自blog.csdn.net/Jaihk662/article/details/106674211