DRL代码学习打卡-3

DRL代码学习打卡-3

1. 什么是 Sarsa (Reinforcement Learning)

和 Q-Learning 几乎一样,唯一不同在上一节已经提过。

1

假如我们经历正在写作业的状态 s1, 然后再挑选一个带来最大潜在奖励的动作 a2, 这样我们就到达了继续写作业状态 s2,
而在这一步,

  • 如果你用的是 Q learning, 你会观看一下在 s2 上选取哪一个动作会带来最大的奖励, 但是在真正要做决定时, 却不一定会选取到那个带来最大奖励的动作, Q-learning 在这一步只是估计了一下接下来的动作值.
  • 而 Sarsa 是实践派, 他说到做到, 在 s2 这一步估算的动作也是接下来要做的动作. 所以 Q(s1, a2) 现实的计算值, 我们也会稍稍改动, 去掉maxQ, 取而代之的是在 s2 上我们实实在在选取的 a2 的 Q 值.
  • 最后像 Q learning 一样, 求出现实和估计的差距 并更新 Q 表里的 Q(s1, a2).

特点

  • Q learning 机器人永远都会选择最近的一条通往成功的道路(max), 不管这条路会有多危险.
  • 而 Sarsa 则是相当保守, 他会选择离危险远远的, 拿到宝藏是次要的, 保住自己的小命才是王道. 这就是使用 Sarsa 方法的不同之处.
def update():
    for episode in range(100):
        # initial observation
        observation = env.reset()

        # RL choose action based on observation
        action = RL.choose_action(str(observation))

        while True:
            # fresh env
            env.render()

            # RL take action and get next observation and reward
            observation_, reward, done = env.step(action)

            # RL choose action based on next observation
            action_ = RL.choose_action(str(observation_))

            # RL learn from this transition (s, a, r, s, a) ==> Sarsa
            RL.learn(str(observation), action, reward, str(observation_), action_)

            # swap observation and action
            observation = observation_
            action = action_

            # break while loop when end of this episode
            if done:
                break

    # end of game
    print('game over')
    env.destroy()

对比之前 Q-Learning的代码

def update():
    for episode in range(100):
        # initial observation
        observation = env.reset()

        while True:
            # fresh env
            env.render()

            # RL choose action based on observation
            action = RL.choose_action(str(observation))

            # RL take action and get next observation and reward
            observation_, reward, done = env.step(action)

            # RL learn from this transition
            RL.learn(str(observation), action, reward, str(observation_))

            # swap observation
            observation = observation_

            # break while loop when end of this episode
            if done:
                break

    # end of game
    print('game over')
    env.destroy()
# off-policy
class QLearningTable(RL):
    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        super(QLearningTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)

    def learn(self, s, a, r, s_):
        self.check_state_exist(s_)
        q_predict = self.q_table.loc[s, a]
        if s_ != 'terminal':
            q_target = r + self.gamma * self.q_table.loc[s_, :].max()  # next state is not terminal
        else:
            q_target = r  # next state is terminal
        self.q_table.loc[s, a] += self.lr * (q_target - q_predict)  # update

# on-policy
class SarsaTable(RL):

    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        super(SarsaTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)

    def learn(self, s, a, r, s_, a_):
        self.check_state_exist(s_)
        q_predict = self.q_table.loc[s, a]
        if s_ != 'terminal':
            q_target = r + self.gamma * self.q_table.loc[s_, a_]  # next state is not terminal
        else:
            q_target = r  # next state is terminal
        self.q_table.loc[s, a] += self.lr * (q_target - q_predict)  # update
   

2. python的继承

class RL(object):
    def __init__(self, action_space, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        self.actions = action_space  # a list
        self.lr = learning_rate
        self.gamma = reward_decay
        self.epsilon = e_greedy

        self.q_table = pd.DataFrame(columns=self.actions, dtype=np.float64)



# off-policy
class QLearningTable(RL):
    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        super(QLearningTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)

    def learn(self, s, a, r, s_):
        self.check_state_exist(s_)
        q_predict = self.q_table.loc[s, a]



# on-policy
class SarsaTable(RL):

    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        super(SarsaTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)

    def learn(self, s, a, r, s_, a_):
        self.check_state_exist(s_)
        q_predict = self.q_table.loc[s, a]

补充知识:

import io
import sys
#改变标准输出的默认编码
sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='utf8')


class Root(object):
    def __init__(self):
        self.x = '这是属性'

    def fun(self):
        print(self.x)
        print('这是方法')


class A(Root):
    def __init__(self):
        super(A,self).__init__()
        print('实例化时执行')


test = A()  # 实例化类
test.fun()  # 调用方法
print(test.x)  # 调用属性
output:
实例化时执行
这是属性
这是方法
这是属性

此时A已经成功继承了父类的属性,所以super().init()的作用也就显而易见了,就是执行父类的构造函数,使得我们能够调用父类的属性。

猜你喜欢

转载自blog.csdn.net/qq_23947237/article/details/104839509
drl
今日推荐