洛谷P1829 Crash的数字表格【莫比乌斯反演】

传送门

题意

计算 \(\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\)

题解

\[ \begin{aligned}Ans=\sum_{i=1}^{N}\sum_{j=1}^{M}lcm(i,j)&=\sum_{i=1}^{N}\sum_{j=1}^{M}\frac{ij}{gcd(i,j)}=\sum_{d=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{M}[gcd(i,j)=d]\frac{ij}{d}\\&=\sum_{d=1}^{N}\frac{1}{d}\sum_{i=1}^{N}\sum_{j=1}^{M}[gcd(i,j)=d]ij\\\end{aligned} \]

设:
\[ f(d)=\sum_{i=1}^{N}\sum_{j=1}^{M}[gcd(i,j)=d]ij\\F(n)=\sum_{n|d}f(d)=\sum_{n|i}^{N}\sum_{n|j}^{M}ij=\sum_{i=1}^{\frac{N}{n}}\sum_{j=1}^{\frac{M}{n}}in\cdot jn=n^2\sum_{i=1}^{\frac{N}{n}}\sum_{j=1}^{\frac{M}{n}}ij \]
然后反演 \(f(n)\)
\[ \begin{aligned}f(n)&=\sum_{n|d}\mu(\frac{d}{n})F(d)=\sum_{n|d}\mu(\frac{d}{n})d^2\sum_{i=1}^{\frac{N}{d}}\sum_{j=1}^{\frac{M}{d}}ij=\sum_{t=1}^{\frac{N}{n}}\mu(t)n^2t^2\sum_{i=1}^{\frac{N}{nt}}\sum_{j=1}^{\frac{M}{nt}}ij\\&=n^2\sum_{t=1}^{\frac{N}{n}}\mu(t)t^2\sum_{i=1}^{\frac{N}{nt}}i\sum_{j=1}^{\frac{M}{nt}}j\end{aligned} \]
然后代回去求 \(Ans\)
\[ \begin{aligned}Ans=\sum_{n=1}^{N}\frac{1}{n}f(n)&=\sum_{n=1}^{N}n\sum_{t=1}^{\frac{N}{n}}\mu(t)t^2\sum_{i=1}^{\frac{N}{nt}}i\sum_{j=1}^{\frac{M}{nt}}j=\sum_{T=1}^{N}T\sum_{t|T}\mu(t)t\sum_{i=1}^{\frac{N}{T}}i\sum_{j=1}^{\frac{M}{T}}j\end{aligned} \]
\(g(t)=\sum_{t|T}\mu(t)t\) 我还不是很懂怎么求,只知道这个当 \(t,T\) 互质时,\(g(t)\) 是个积性函数,那么\(g(Tt)=g(T)g(t)\),否则 \(g(Tt)=g(T)\)

代码

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;
typedef long long LL;
const int N=1e7+10;
const int mod=20101009;
int n,m,vis[N],prime[N],cnt;
LL sum[N],f[N];

void init(int n){
    f[1]=1;
    for(int i=2;i<=n;i++){
        if(!vis[i]) {prime[++cnt]=i;f[i]=(1-i+mod)%mod;}
        for(int j=1;1ll*i*prime[j]<=n;j++){
            vis[i*prime[j]]=1;
            if(i%prime[j]==0) {f[i*prime[j]]=f[i];break;}
            f[i*prime[j]]=f[i]*f[prime[j]]%mod;
        }
    }
    for(int i=1;i<=n;i++) sum[i]=(f[i]*i+sum[i-1])%mod;
}

int main(){
    init(1e7);
    scanf("%d%d",&n,&m);
    if(n>m) swap(n,m);
    LL ans=0;
    for(int l=1,r;l<=n;l=r+1){
        r=min(n/(n/l),m/(m/l));
        LL temp1=1ll*(n/l+1)*(n/l)/2%mod;
        LL temp2=1ll*(m/l+1)*(m/l)/2%mod;
        ans=(ans+(sum[r]-sum[l-1]+mod)%mod*temp1%mod*temp2%mod)%mod;
    }
    printf("%lld\n",ans);
    return 0;
}

猜你喜欢

转载自www.cnblogs.com/BakaCirno/p/12530943.html