luoguP1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

题意

注:默认\(n\leqslant m\)

所求即为:\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\)
因为\(i*j=\gcd(i,j)*lcm(i,j)\),因此原式为:
\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\frac{i*j}{\gcd(i,j)}\)
枚举\(gcd(i,j)=d\)
\(\sum\limits_{d=1}^{n}\frac{1}{d}*\sum\limits_{i=1}^{n}\sum\limits_{j=1}^mi*j*[\gcd(i,j)=d]\)
套路地提出\(d\)
\(\sum\limits_{d=1}^{n}\frac{1}{d}\sum\limits_{i=1}^{\frac{n}{d}}\sum\limits_{j=1}^{\frac{m}{d}}i*d*j*d*[\gcd(i,j)=1]\)
即:
\(\sum\limits_{d=1}^{n}d*\sum\limits_{i=1}^{\frac{n}{d}}\sum\limits_{j=1}^{\frac{m}{d}}i*j*[\gcd(i,j)=1]\)
用莫比乌斯函数性质替换\([\gcd(i,j)=1]\)
\(\sum\limits_{d=1}^{n}d*\sum\limits_{i=1}^{\frac{n}{d}}\sum\limits_{j=1}^{\frac{m}{d}}i*j*\sum\limits_{x|\gcd(i,j)}\mu(x)\)
转而枚举\(x\)
\(\sum\limits_{d=1}^{n}d*\sum\limits_{x=1}^{\frac{n}{d}}\mu(x)\sum\limits_{i=1}^{\frac{n}{d}}\sum\limits_{j=1}^{\frac{m}{d}}i*j*[x|\gcd(i,j)]\)
\([x|\gcd(i,j)]\)去掉:
\(\sum\limits_{d=1}^{n}d*\sum\limits_{x=1}^{\frac{n}{d}}x^2*\mu(x)\sum\limits_{i=1}^{\frac{n}{d*x}}\sum\limits_{j=1}^{\frac{m}{d*x}}i*j\)
即:
\(\sum\limits_{d=1}^{n}d*\sum\limits_{x=1}^{\frac{n}{d}}x^2*\mu(x)(\sum\limits_{i=1}^{\frac{n}{d*x}}i)(\sum\limits_{j=1}^{\frac{m}{d*x}}j)\)

求几个前缀和,第二个和第三四个都可以除法分块即可。

另一种做法

code:

#include<bits/stdc++.h>
using namespace std;
#define re register
const int maxn=10000010;
const int mod=20101009;
const int inv2=10050505;
int n,m,ans;
int mu[maxn],sum[maxn];
bool vis[maxn];
vector<int>prime;
inline void shai(int n)
{
    vis[1]=1;mu[1]=1;
    for(re int i=2;i<=n;i++)
    {
        if(!vis[i])prime.push_back(i),mu[i]=-1;
        for(re unsigned int j=0;j<prime.size()&&i*prime[j]<=n;j++)
        {
            vis[i*prime[j]]=1;
            if(i%prime[j]==0)break;
            mu[i*prime[j]]=-mu[i];
        }
    }
    for(re int i=1;i<=n;i++)sum[i]=(sum[i-1]+1ll*mu[i]*i%mod*i%mod)%mod;
}
inline int calc(int l,int r){return 1ll*(r-l+1)*(l+r)%mod*inv2%mod;}
int main()
{
    shai(10000000);
    scanf("%d%d",&n,&m);
    if(n>m)swap(n,m);
    for(re int ld=1,rd;ld<=n;ld=rd+1)
    {
        rd=min(n/(n/ld),m/(m/ld));
        int res=0;
        for(re int l=1,r;l<=n/ld;l=r+1)
        {
            r=min((n/ld)/((n/ld)/l),(m/ld)/((m/ld)/l));
            res=(res+1ll*(sum[r]-sum[l-1])*calc(1,(n/ld)/l)%mod*calc(1,(m/ld)/l)%mod)%mod;
        }
        ans=(ans+1ll*res*calc(ld,rd)%mod)%mod;
    }
    printf("%d",(ans+mod)%mod);
    return 0;
}

猜你喜欢

转载自www.cnblogs.com/nofind/p/11946864.html