hadoop hdfs学习(二)

 

一、HDFS组成架构

1)NameNode(nn):就是Master,他是一个主管,管理者。

  1. 管理HDFS的名称控件
  2. 配置副本策略
  3. 管理数据块(Block)映射信息
  4. 处理客户端读写请求

2)DataNode:就是Slave。NameNode下达命令,DataNode执行实际的操作

  1. 存储实际的数据块
  2. 执行数据块的读/写操作

3)Client:就是客户端

  1. 文件切分。文件上传HDFS的时候,Client将文件切分成一个一个的Block,然后进行上传
  2. 与NameNode交互,获取文件的位置信息
  3. 与DataNode交互,读取或者写入数据
  4. Client提供一些命令来管理HDFS,比如NameNode的格式化
  5. Client可以通过一些命令来访问HDFS,比如对HDFS增删改查操作

4)Secondary NameNode:并非NameNode的热备。当NameNode挂掉的时候,他并不能马上替换NameNode并提供服务

  1. 辅助NameNode,分担其工作量,比如定期合并Fsimage和Edits,并推给NameNode
  2. 在进击情况下,可辅助NameNode(只可以恢复部分,并不是所有)

HDFS在Hadoop2.X中文件块大小默认是128M,老版本是64M。

为什么块的大小不能设置太小或者太大?

  1.HDFS的块设置太小会增加寻址时间,程序一直在找块的开始位置;

  2.如果块设置的太大从磁盘传输数据的时间会明显大于定位这个快开始位置所需的时间。导致程序在处理这块数据时,会非常慢;

总结:HDFS块的大小设置主要取决于磁盘的传输速率。

二、NameNode和SecondaryNameNode

2.1 NN和2NN工作机制

思考NameNode中的元数据是存储在哪里的?

首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此,元数据需要存放在内存中。但如果只存在内存中,一旦断电,元数据丢失,整个集群就无法工作了因此产生在磁盘中备份元数据FsImage

这样又会带来新的问题,当在内存中的元数据更新时,如果同时更新FsImage,就会导致效率过低,但如果不更新,就会发生一致性问题,一旦NameNode节点断电,就会产生数据丢失。因此,引入Edits文件(只进行追加操作,效率很高)。每当元数据有更新或者添加元数据时,修改内存中的元数据并追加到Edits中。这样,一旦NameNode节点断电,可以通过FsImageEdits的合并,合成元数据。

但是,如果长时间添加数据到Edits中,会导致该文件数据过大,效率降低,而且一旦断电,恢复元数据需要的时间过长。因此,需要定期进行FsImageEdits的合并,如果这个操作由NameNode节点完成,又会效率过低。因此,引入一个新的节点SecondaryNamenode,专门用于FsImageEdits的合并。

工作机制如图↓

1. 第一阶段:NameNode启动

1)第一次启动NameNode格式化后创建Fsimage和Edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。

2客户端对元数据进行增删改的请求

3NameNode记录操作日志,更新滚动日志

4NameNode在内存中对数据进行增删改

2. 第二阶段:Secondary NameNode工作

1Secondary NameNode询问NameNode是否需要CheckPoint直接带回NameNode是否检查结果。

2Secondary NameNode请求执行CheckPoint。

3NameNode滚动正在写的Edits日志

4)将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode。

5Secondary NameNode加载编辑日志和镜像文件到内存,并合并。

6生成新的镜像文件fsimage.chkpoint。

7拷贝fsimage.chkpointNameNode

8NameNodefsimage.chkpoint重新命名成fsimage。

2.2Fsimage和Edits概念

NameNode被格式化之后,将在/opt/module/hadoop-2.7.2/data/tmp/dfs/name/current目录中产生如下文件

fsimage_0000000000000000000
fsimage_0000000000000000000.md5
seen_txid
VERSION

(1)Fsimage文件:HDFS文件系统元数据的一个永久性的检查点,其中包含HDFS文件系统的所有目录和文件inode的序列化信息。 

(2)Edits文件:存放HDFS文件系统的所有更新操作的路径,文件系统客户端执行的所有写操作首先会被记录到Edits文件中。 

(3)seen_txid文件保存的是一个数字,就是最后一个edits_的数字

(4)每次NameNode启动的时候都会将Fsimage文件读入内存,加载Edits里面的更新操作,保证内存中的元数据信息是最新的、同步的,可以看成NameNode启动的时候就将Fsimage和Edits文件进行了合并。

Fsimage:NameNode内存中元数据序列化后形成的文件

Edits记录客户端更新元数据信息的每一步操作(可通过Edits运算出元数据)。

NameNode启动时,先滚动Edits并生成一个空的edits.inprogress,然后加载EditsFsimage到内存中,此时NameNode内存就持有最新的元数据信息。Client开始对NameNode发送元数据的增删改的请求,这些请求的操作首先会被记录到edits.inprogress中(查询元数据的操作不会被记录在Edits中,因为查询操作不会更改元数据信息),如果此时NameNode挂掉,重启后会从Edits中读取元数据的信息。然后,NameNode会在内存中执行元数据的增删改的操作。

由于Edits中记录的操作会越来越多,Edits文件会越来越大,导致NameNode在启动加载Edits时会很慢,所以需要对EditsFsimage进行合并(所谓合并,就是将EditsFsimage加载到内存中,照着Edits中的操作一步步执行,最终形成新的Fsimage)。SecondaryNameNode的作用就是帮助NameNode进行EditsFsimage的合并工作。

SecondaryNameNode首先会询问NameNode是否需要CheckPoint(触发CheckPoint需要满足两个条件中的任意一个,定时时间到和Edits中数据写满了,默认1小时,100w直接带回NameNode是否检查结果。SecondaryNameNode执行CheckPoint操作,首先会让NameNode滚动Edits并生成一个空的edits.inprogress,滚动Edits的目的是给Edits打个标记,以后所有新的操作都写入edits.inprogress,其他未合并的EditsFsimage会拷贝到SecondaryNameNode的本地,然后将拷贝的EditsFsimage加载到内存中进行合并,生成fsimage.chkpoint,然后将fsimage.chkpoint拷贝给NameNode,重命名为Fsimage后替换掉原来的FsimageNameNode在启动时就只需要加载之前未合并的EditsFsimage即可,因为合并过的Edits中的元数据信息已经被记录在Fsimage中。

2.3 CheckPoint时间设置

1)通常情况下,SecondaryNameNode每隔一小时执行一次

  [hdfs-default.xml]

<property>


  <name>dfs.namenode.checkpoint.period</name>


  <value>3600</value>


</property>

2)一分钟检查一次操作次数,3当操作次数达到1百万时,SecondaryNameNode执行一次。

<property>


  <name>dfs.namenode.checkpoint.txns</name>


  <value>1000000</value>


<description>操作动作次数</description>


</property>

<property>

  <name>dfs.namenode.checkpoint.check.period</name>

  <value>60</value>

<description> 1分钟检查一次操作次数</description>

</property >

 

三、DataNode

1一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据校验和,以及时间戳

2DataNode启动后向NameNode注册,通过后,周期性(1小时NameNode上报所有的块信息。

3心跳是每3一次,心跳返回结果带有NameNode给该DataNode的命令如复制块数据到另一台机器,或删除某个数据块如果超过10分钟没有收到某个DataNode的心跳,则认为该节点不可用。

4集群运行中可以安全加入和退出一些机器

猜你喜欢

转载自www.cnblogs.com/g-cl/p/12434918.html